20 |
S3L |
85.86 |
57.63 |
46.92 |
76.25 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
86.84 |
64.19 |
71.87 |
38.92 |
29.33 |
69.51 |
38.09 |
57.10 |
42.44 |
72.82 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
28.66 |
16.09 |
26.23 |
74.79 |
43.04 |
47.70 |
37.01 |
36.75 |
28.22 |
28.86 |
|
Abbreviation
Contributors |
Description |
Anonymous |
Structured Semantic Segmentation Learning |
|
2017-03-27 08:01:16 |
57 |
ResNet1 |
85.32 |
56.73 |
45.78 |
75.44 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
86.42 |
62.92 |
70.86 |
34.81 |
27.35 |
67.85 |
34.22 |
55.22 |
40.71 |
71.19 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
21.36 |
17.33 |
24.68 |
73.65 |
45.12 |
47.79 |
39.47 |
36.88 |
31.31 |
26.56 |
|
Abbreviation
Contributors |
Description |
.. |
ResNet101 |
|
2017-04-18 13:53:06 |
52 |
VSNet-SLab+Samsung |
87.06 |
66.73 |
54.13 |
77.98 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
87.31 |
66.42 |
72.11 |
43.17 |
31.09 |
69.09 |
41.65 |
56.68 |
42.70 |
74.42 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
31.98 |
21.69 |
33.29 |
74.13 |
62.64 |
64.35 |
59.03 |
59.40 |
45.69 |
45.68 |
|
Abbreviation
Contributors |
Description |
Lejian Ren[1],Renda Bao[1],Yao Sun[1],Si Liu[1] and Yinglu Liu[2],Yanli Li[2],Junjun Xiong[2]
[1]IIE,CAS
[2]Beijing Samsung Telecom R&D Center |
We have proposed a view-specific contextual human parsing method. It has two core contributions. (1) The model has a cascade structure including a view classifier and the corresponding human parsing model w.r.t the specific view. The view classifier predicts whether the human is in frontal or back view. The view groundtruth is automatically generated by analyzing the parsing groundtruth with human knowledge. We observe that the IoUs of left/right legs, left/right shoes are significantly boosted in the validation set. (2) We train a category classifier to estimate the labels of the images[1]. The classification results serve as the context of the parsing and boost the performances. Two human parsing models based on RefineNet[2] and PSPnet [3] are implemented. The best results were obtained by combining them. No extra datasets were used. [1] Human Parsing With Contextualized Convolutional Neural Network, Xiaodan Liang, Chunyan Xu, Xiaohui Shen, Jianchao Yang, Si Liu, Jinhui Tang, Liang Lin, Shuicheng Yan. TPAMI, 2016 [2] RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation, Guosheng Lin, Anton Milan, Chunhua Shen, Ian Reid, CVPR 2017 [3] Pyramid Scene Parsing Network, Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia. CVPR 2017 |
|
2017-06-04 15:14:38 |
41 |
WhiskNet |
86.16 |
57.95 |
47.74 |
76.45 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
86.66 |
62.69 |
70.76 |
36.41 |
15.54 |
68.66 |
37.45 |
55.64 |
40.54 |
72.86 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
26.23 |
18.67 |
29.57 |
73.46 |
57.09 |
58.50 |
41.72 |
41.34 |
30.17 |
30.88 |
|
Abbreviation
Contributors |
Description |
Haoshu Fang, Yuwing Tai, Cewu Lu |
It has been demonstrated that multi-scale features are useful to improve the performance of semantic segmentation. However, without careful design of network architectures, deep models such as ResNet-101 cannot fully utilize the atrous convolution structure proposed in [1] to leverage the advantage of multi-scale features. In this work, we propose 'WhiskNet', which utilizes building blocks of ResNet, to extract and incorporate very deep multi-scale features into a single network model. Moreover, 'WhiskNet' adds an extra 'Multi-atrous-convolution' for each scale which achieves excellent performance when merging multi-scale features.
[1]Attention to Scale: Scale-aware Semantic Image Segmentation Liang-Chieh Chen, Yi Yang, Jiang Wang, Wei Xu and Alan L Yuille CVPR 2016 |
|
2017-06-03 14:22:05 |
68 |
1 |
83.27 |
54.44 |
42.39 |
72.62 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
84.30 |
56.44 |
65.97 |
28.76 |
18.31 |
63.10 |
30.91 |
51.12 |
30.13 |
65.59 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
27.53 |
9.67 |
23.33 |
69.73 |
47.97 |
50.18 |
37.11 |
36.77 |
23.11 |
27.87 |
|
Abbreviation
Contributors |
Description |
1 |
1 |
|
2017-06-02 07:30:01 |
46 |
Self-Supervised Neural Aggregation Networks |
87.29 |
63.35 |
52.26 |
78.25 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
87.91 |
66.54 |
73.14 |
40.23 |
27.30 |
70.47 |
39.09 |
58.03 |
44.25 |
74.52 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
29.94 |
24.04 |
32.51 |
75.56 |
58.84 |
60.74 |
51.82 |
52.16 |
39.44 |
38.74 |
|
Abbreviation
Contributors |
Description |
ZHAO Jian (NUS & NUDT), NIE Xuecheng (NUS), XIAO Huaxin (NUS & NUDT), CHEN Yunpeng (NUS), LI Jianshu (NUS), YAN Shuicheng (NUS & Qihoo360 AI Institute) (The first 3 authors are with equal contributions.) |
We present a Self-Supervised Neural Aggregation Network (SS-NAN) for human parsing. SS-NAN adaptively learns to aggregate the multi-scale features at each pixel "address". In order to further improve the feature discriminative capacity, a self-supervised joint loss is adopted as an auxiliary learning strategy, which imposes human joint structures into parsing results without resorting to extra supervision. The proposed SS-NAN is end-to-end trainable. SS-NAN can be integrated into any advanced neural networks to help aggregate features regarding the importance at different positions and scales and incorporate rich high-level knowledge regarding human joint structures from a global perspective, which in turn improve the parsing results. Moreover, to further boost the overall performance of SS-NAN for human parsing, we also leverage a robust multi-view strategy with different state-of-the-art backbone models. |
|
2017-06-04 13:23:59 |
107 |
BUPTMM-Parsing |
84.93 |
55.62 |
45.44 |
74.60 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
85.20 |
60.25 |
68.60 |
32.11 |
21.38 |
66.51 |
32.41 |
55.08 |
35.01 |
69.19 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
25.37 |
14.77 |
24.92 |
72.12 |
53.75 |
55.82 |
39.82 |
40.16 |
28.33 |
27.97 |
|
Abbreviation
Contributors |
Description |
Peng Cheng, Xiaodong Liu, Peiye Liu, Wu Liu |
We revised and finetuned the Attention+SSL [1] and Attention to Scale [2] on LIP training set. Then we combined the two models with different fusion strategies.
[1] "Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing", Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, CVPR 2017.
[2] Attention to Scale: Scale-aware Semantic Image Segmentation Liang-Chieh Chen, Yi Yang, Jiang Wang, Wei Xu and Alan L Yuille CVPR 2016 |
|
2017-06-04 14:54:06 |
18 |
TestParsing |
85.04 |
59.05 |
47.68 |
74.85 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
85.31 |
59.56 |
67.59 |
32.65 |
22.82 |
65.65 |
36.27 |
53.53 |
34.54 |
69.36 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
23.10 |
15.58 |
24.78 |
71.56 |
56.06 |
57.85 |
50.28 |
50.81 |
38.25 |
38.13 |
|
Abbreviation
|
2018-01-13 08:42:57 |
258 |
AttEdgeNet |
88.41 |
67.64 |
56.47 |
80.00 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.01 |
68.90 |
75.37 |
47.60 |
35.42 |
71.65 |
39.27 |
58.94 |
49.86 |
76.48 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
28.46 |
24.99 |
31.79 |
77.36 |
68.52 |
69.05 |
60.15 |
59.70 |
49.25 |
47.54 |
|
Abbreviation
|
2018-11-16 01:41:04 |
284 |
Attention |
84.52 |
54.83 |
44.60 |
74.03 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
84.90 |
59.11 |
68.25 |
31.48 |
20.76 |
65.47 |
30.71 |
53.47 |
34.67 |
68.47 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
22.75 |
14.97 |
22.35 |
71.89 |
52.54 |
55.31 |
39.77 |
39.67 |
27.60 |
27.85 |
|
Abbreviation
Contributors |
Description |
WuTao |
ABC |
|
2018-05-03 15:45:48 |
287 |
n_v3 |
86.73 |
61.93 |
51.53 |
77.30 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
86.75 |
63.59 |
70.81 |
36.70 |
22.68 |
68.55 |
37.10 |
57.35 |
38.33 |
73.04 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
28.09 |
12.35 |
28.37 |
74.33 |
62.98 |
64.23 |
58.71 |
58.89 |
44.32 |
43.40 |
|
Abbreviation
|
2018-06-04 01:58:10 |
283 |
JD_BUPT |
87.42 |
65.86 |
54.44 |
78.34 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
87.26 |
65.10 |
72.21 |
42.71 |
31.03 |
70.53 |
42.04 |
58.95 |
42.59 |
74.47 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
32.27 |
22.03 |
33.40 |
74.93 |
63.82 |
65.66 |
59.68 |
59.92 |
45.37 |
44.84 |
|
Abbreviation
Contributors |
Description |
Xinchen Liu (BUPT&JD), Meng Zhang (BUPT), Yanan Li (BUPT), Wenhui Gao (BUPT), Jiangtian Pan (JD AI Research), Wu Liu (JD AI Research), Huadong Ma (BUPT) |
(1) We revised and finetuned the JPP-Net[1], SS-NAN[2], SSL[3], DenseNet[4], RefineNet[5] on LIP training set. Then we combined the five models with different fusion strategies. (2) We mined several hard classes to improve the overall performance. (3) We used the data augmentation, focal loss[6], and image morphology. [1]Liang et al., Look into Person: Joint Body Parsing & Pose Estimation Network and A New Benchmark, T-PAMI, 2018. [2]Zhao et al., Self-Supervised Neural Aggregation Networks for Human Parsing, CVPR Workshop, 2017. [3]Gong et al., Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing, CVPR, 2017. [4]Jegou et al., The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation, CVPR, 2017. [5]Lin et al., RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation, CVPR, 2017. [6]Focal Loss for Dense Object Detection, Lin et al., ICCV, 2017. |
|
2018-06-10 12:59:11 |
290 |
densenet&deeplabv3+ |
81.56 |
49.56 |
37.92 |
70.65 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
83.19 |
50.91 |
63.94 |
15.78 |
4.58 |
59.92 |
26.81 |
47.19 |
27.71 |
62.74 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
17.66 |
2.88 |
11.60 |
68.13 |
44.82 |
48.30 |
36.70 |
36.21 |
25.92 |
23.40 |
|
Abbreviation
Contributors |
Description |
hanqiuyuan |
I replace the backbone of Xception with densenet in the deeplabv3+ model.Meanwhile, I remove the last layer of densenet and the maxpool layer to get the feature map.
The atrous I use are 3,6,9 and the output_stride is 32.The crop_size is 640 because the maxsize of the dataset id 640.
Finally, I concat the Unit1 of Block2 with the resized and concated feature maps. |
|
2018-05-27 05:33:01 |
292 |
|
87.74 |
65.72 |
55.43 |
78.70 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
87.59 |
66.47 |
72.68 |
43.25 |
34.98 |
70.70 |
40.48 |
59.49 |
46.94 |
74.72 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
30.84 |
30.40 |
35.19 |
76.19 |
66.17 |
67.17 |
58.79 |
58.14 |
44.34 |
43.98 |
|
Abbreviation
|
2018-09-27 11:03:38 |
297 |
xNet |
80.98 |
47.50 |
36.20 |
70.20 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
84.03 |
61.58 |
69.31 |
29.35 |
22.69 |
58.93 |
27.68 |
45.39 |
31.34 |
65.49 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
8.25 |
9.27 |
19.56 |
72.61 |
2.73 |
38.18 |
12.44 |
32.50 |
13.34 |
19.33 |
|
Abbreviation
|
2018-06-06 04:21:49 |
301 |
zz |
89.26 |
72.03 |
60.54 |
81.19 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.02 |
70.53 |
75.50 |
53.18 |
39.36 |
74.00 |
48.65 |
62.51 |
49.62 |
78.25 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
27.50 |
35.99 |
38.68 |
77.21 |
71.78 |
72.51 |
69.91 |
68.99 |
54.06 |
53.54 |
|
Abbreviation
|
2019-06-02 23:37:58 |
270 |
CE2P |
88.92 |
67.78 |
57.90 |
80.59 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.05 |
68.88 |
75.38 |
46.98 |
36.80 |
73.11 |
38.31 |
60.97 |
50.19 |
77.11 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
29.25 |
26.10 |
30.89 |
77.87 |
69.74 |
71.15 |
66.43 |
66.33 |
51.80 |
51.76 |
|
Abbreviation
Contributors |
Description |
Ting Liu(BJTU)*, Tao Ruan(BJTU)*, Yunchao Wei(UIUC), Shikui Wei(BJTU), Jinjun Xiong(UIUC, IBM), Yao Zhao(BJTU), Thomas Huang(UIUC). (* means equal contribution) |
We proposed a novel CE2P[1] network, which consists of three key modules to learn for parsing in an end-to-end manner: 1) high resolution embedding module; 2) global context embedding module; 3) edge perceiving module. With the Res101 as the backbone, one single CE2P model can achieve the mIoU score of 56.5% without any bells and whistles. Our best result is produced by an ensemble of three models. Code has been made available at https://github.com/liutinglt/CE2P. Ref: [1] Devil in the Details: Towards Accurate Single and Multiple Human Parsing. AAAI 2019 |
|
2018-09-19 13:19:19 |
285 |
B |
89.02 |
70.72 |
59.58 |
80.86 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.06 |
70.36 |
75.26 |
49.75 |
36.14 |
72.75 |
42.06 |
60.51 |
49.30 |
77.72 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
31.13 |
25.96 |
35.19 |
77.33 |
71.66 |
72.92 |
72.03 |
71.08 |
55.95 |
55.46 |
|
Abbreviation
|
2019-04-08 04:33:28 |
307 |
Reproduce_SCHP |
88.04 |
72.34 |
58.29 |
79.56 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.30 |
69.93 |
74.20 |
52.31 |
39.62 |
70.55 |
38.68 |
58.62 |
50.45 |
75.73 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
32.74 |
25.93 |
31.67 |
76.38 |
68.69 |
69.94 |
67.56 |
66.62 |
54.46 |
53.42 |
|
Abbreviation
|
2020-02-02 15:30:03 |
309 |
|
86.80 |
61.62 |
51.41 |
77.37 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
86.82 |
63.48 |
70.82 |
37.63 |
22.38 |
69.09 |
37.22 |
57.15 |
38.69 |
73.15 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
28.99 |
11.45 |
27.38 |
74.34 |
62.35 |
63.76 |
58.04 |
58.43 |
43.86 |
43.08 |
|
Abbreviation
|
2018-10-18 02:40:13 |
325 |
jpp21 |
86.51 |
61.39 |
51.18 |
76.90 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
86.44 |
62.41 |
70.53 |
36.72 |
26.55 |
68.51 |
32.79 |
56.45 |
40.46 |
72.42 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
25.08 |
13.51 |
27.58 |
74.14 |
63.01 |
64.08 |
57.51 |
57.93 |
43.88 |
43.57 |
|
Abbreviation
|
2018-10-09 05:57:44 |
328 |
|
87.51 |
63.29 |
53.21 |
78.47 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
87.86 |
65.17 |
73.51 |
39.01 |
32.57 |
70.32 |
34.04 |
57.68 |
46.44 |
74.00 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
27.40 |
16.17 |
23.76 |
76.16 |
65.02 |
66.72 |
58.75 |
58.93 |
45.44 |
45.32 |
|
Abbreviation
|
2018-10-13 09:08:03 |
330 |
|
86.41 |
60.75 |
50.30 |
76.75 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
86.40 |
62.31 |
70.12 |
35.22 |
22.56 |
68.46 |
31.15 |
56.09 |
38.46 |
72.44 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
25.25 |
11.84 |
25.88 |
73.93 |
62.11 |
63.51 |
56.84 |
57.25 |
43.59 |
42.67 |
|
Abbreviation
|
2018-10-18 12:20:03 |
329 |
pspnet101 |
87.52 |
63.20 |
53.27 |
78.34 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
87.45 |
65.89 |
73.38 |
40.50 |
31.37 |
70.98 |
36.23 |
58.20 |
44.58 |
74.88 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
27.12 |
21.69 |
30.00 |
76.06 |
63.69 |
65.05 |
57.04 |
56.96 |
43.05 |
41.27 |
|
Abbreviation
|
2018-10-22 08:06:51 |
335 |
|
84.19 |
57.36 |
47.17 |
73.10 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
83.37 |
53.99 |
62.68 |
36.35 |
29.50 |
65.57 |
35.58 |
54.19 |
35.06 |
65.25 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
25.55 |
23.21 |
31.74 |
69.78 |
57.23 |
56.01 |
48.42 |
47.41 |
31.60 |
30.93 |
|
Abbreviation
|
2018-11-02 02:06:26 |
340 |
|
85.80 |
62.60 |
51.39 |
75.92 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
85.82 |
60.53 |
68.09 |
41.12 |
24.93 |
65.69 |
32.14 |
52.38 |
42.23 |
71.43 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
17.79 |
13.53 |
23.77 |
72.65 |
64.62 |
65.61 |
63.56 |
63.49 |
49.41 |
48.98 |
|
Abbreviation
|
2019-04-03 08:57:12 |
324 |
e2e_semantic_p2_4convs_mask_project_softmax |
83.25 |
64.74 |
47.40 |
73.29 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
83.70 |
63.17 |
69.90 |
39.11 |
38.38 |
64.30 |
33.10 |
52.29 |
44.39 |
67.90 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
25.24 |
18.45 |
22.07 |
73.03 |
51.63 |
52.98 |
38.59 |
38.75 |
35.71 |
35.37 |
|
Abbreviation
Contributors |
Description |
Cheng-Yang Fu |
Train : Lip_train |
|
2018-11-09 23:47:12 |
369 |
Zll |
85.29 |
61.67 |
49.91 |
75.23 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
85.26 |
60.90 |
68.13 |
36.69 |
26.83 |
65.24 |
32.89 |
53.63 |
37.86 |
69.71 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
22.99 |
13.03 |
23.88 |
72.43 |
61.58 |
63.10 |
59.33 |
59.81 |
42.43 |
42.57 |
|
Abbreviation
Contributors |
Description |
Zllrunning |
First try! |
|
2019-01-22 14:40:32 |
377 |
test1111 |
45.61 |
22.97 |
13.27 |
35.76 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
50.25 |
13.14 |
16.64 |
10.57 |
1.47 |
18.48 |
11.71 |
17.41 |
8.54 |
20.42 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
1.80 |
2.82 |
4.85 |
13.77 |
4.97 |
5.20 |
12.48 |
17.41 |
16.96 |
16.52 |
|
Abbreviation
Contributors |
Description |
test1111 |
test1111 |
|
2019-03-11 11:11:13 |
379 |
Code X |
89.79 |
75.86 |
63.57 |
82.03 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.32 |
71.74 |
76.03 |
55.80 |
41.98 |
74.78 |
52.93 |
65.00 |
55.10 |
79.08 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
38.56 |
39.99 |
41.77 |
77.70 |
72.68 |
73.41 |
73.31 |
72.87 |
59.55 |
59.71 |
|
Abbreviation
|
2019-06-01 07:33:18 |
382 |
|
90.61 |
74.69 |
64.13 |
83.33 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
90.56 |
73.30 |
77.89 |
56.43 |
40.26 |
76.55 |
52.77 |
65.58 |
54.88 |
80.60 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
33.01 |
37.31 |
44.09 |
79.30 |
75.52 |
76.05 |
75.25 |
74.19 |
59.45 |
59.53 |
|
Abbreviation
|
2019-06-02 19:43:26 |
384 |
what? |
79.72 |
42.31 |
36.53 |
66.09 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
77.53 |
42.93 |
48.46 |
17.03 |
7.82 |
57.13 |
28.59 |
50.17 |
21.86 |
60.77 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
22.79 |
6.66 |
23.13 |
54.92 |
38.05 |
39.11 |
41.71 |
42.28 |
25.02 |
24.62 |
|
Abbreviation
|
2019-03-14 13:51:19 |
344 |
MPP |
86.41 |
60.75 |
50.30 |
76.75 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
86.40 |
62.31 |
70.12 |
35.22 |
22.56 |
68.46 |
31.15 |
56.09 |
38.46 |
72.44 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
25.25 |
11.84 |
25.88 |
73.93 |
62.11 |
63.51 |
56.84 |
57.25 |
43.59 |
42.67 |
|
Abbreviation
Contributors |
Description |
fdu_tsq |
MPP-tsq-sysu |
|
2019-03-22 08:48:49 |
395 |
DENet |
86.74 |
63.63 |
52.54 |
77.35 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
87.10 |
64.28 |
72.13 |
40.27 |
33.14 |
68.06 |
31.82 |
55.02 |
44.20 |
73.25 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
26.48 |
23.51 |
25.80 |
74.84 |
64.29 |
65.59 |
55.96 |
55.85 |
45.22 |
44.02 |
|
Abbreviation
|
2019-03-26 07:14:56 |
396 |
|
87.45 |
65.98 |
54.16 |
78.50 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
87.88 |
66.57 |
73.08 |
44.57 |
31.14 |
69.64 |
37.81 |
57.10 |
46.94 |
74.65 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
29.27 |
19.11 |
28.78 |
75.07 |
64.73 |
66.90 |
58.38 |
58.78 |
46.90 |
45.88 |
|
Abbreviation
|
2019-04-11 16:56:28 |
236 |
|
90.02 |
74.61 |
63.07 |
82.35 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.76 |
72.59 |
76.89 |
56.72 |
42.90 |
75.25 |
48.14 |
64.87 |
52.86 |
79.52 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
31.23 |
36.57 |
40.21 |
78.15 |
73.88 |
74.21 |
74.22 |
73.09 |
60.13 |
60.28 |
|
Abbreviation
|
2019-06-02 21:04:23 |
399 |
|
88.85 |
68.35 |
57.82 |
80.51 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.96 |
69.66 |
75.53 |
49.30 |
35.70 |
73.09 |
38.76 |
61.11 |
49.41 |
77.18 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
28.10 |
30.00 |
32.32 |
77.70 |
69.25 |
71.04 |
65.11 |
64.43 |
49.85 |
50.01 |
|
Abbreviation
|
2019-05-09 11:42:17 |
394 |
BAIDU-UTS |
90.38 |
77.33 |
65.18 |
83.00 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
90.10 |
73.76 |
77.48 |
59.30 |
44.60 |
75.89 |
51.73 |
65.27 |
56.70 |
80.54 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
38.77 |
40.58 |
44.01 |
78.43 |
75.21 |
75.64 |
76.05 |
74.84 |
62.44 |
62.22 |
|
Abbreviation
Contributors |
Description |
Peike Li, Yunqiu Xu, Yi Yang |
|
|
2019-06-03 00:00:35 |
413 |
BUPT-pris727 |
88.95 |
68.19 |
57.93 |
80.63 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.97 |
69.91 |
75.68 |
49.40 |
34.96 |
73.42 |
39.35 |
61.51 |
48.99 |
77.37 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
27.98 |
29.52 |
32.29 |
77.82 |
69.62 |
71.30 |
65.60 |
64.65 |
50.12 |
50.11 |
|
Abbreviation
|
2019-05-19 09:38:14 |
391 |
|
62.40 |
12.10 |
9.17 |
43.08 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
62.77 |
1.75 |
22.89 |
0.00 |
0.00 |
24.13 |
0.00 |
9.91 |
0.00 |
20.23 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
0.00 |
0.00 |
0.00 |
32.37 |
0.27 |
7.62 |
1.00 |
0.48 |
0.00 |
0.00 |
|
Abbreviation
|
2019-04-12 11:22:30 |
416 |
|
87.58 |
66.07 |
55.03 |
78.61 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
87.80 |
66.12 |
72.51 |
44.42 |
34.73 |
70.02 |
37.56 |
57.78 |
46.96 |
74.25 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
24.95 |
23.08 |
27.73 |
75.40 |
66.51 |
68.27 |
61.50 |
61.66 |
49.88 |
49.38 |
|
Abbreviation
|
2019-05-12 12:02:46 |
405 |
yuanjianlong |
89.53 |
70.86 |
59.96 |
81.65 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.90 |
71.61 |
76.95 |
52.71 |
38.47 |
74.02 |
43.67 |
61.52 |
49.44 |
78.95 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
27.30 |
34.20 |
38.36 |
78.71 |
71.40 |
72.59 |
67.09 |
66.24 |
53.17 |
52.91 |
|
Abbreviation
Contributors |
Description |
https://github.com/jianlong-yuan/MRFM |
https://github.com/jianlong-yuan/MRFM |
|
2019-05-10 17:05:02 |
323 |
HGP |
31.90 |
7.51 |
3.39 |
24.08 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
39.96 |
0.99 |
8.39 |
0.13 |
0.02 |
4.01 |
0.41 |
0.40 |
0.13 |
0.45 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
0.90 |
0.11 |
0.29 |
6.77 |
2.13 |
2.32 |
0.41 |
0.05 |
0.01 |
0.00 |
|
Abbreviation
Contributors |
Description |
HGP |
HGP |
|
2019-04-18 04:32:03 |
428 |
|
88.74 |
71.90 |
59.31 |
80.57 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.06 |
70.54 |
75.48 |
51.62 |
39.75 |
71.75 |
40.15 |
59.49 |
50.94 |
77.04 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
29.74 |
23.68 |
34.24 |
77.52 |
71.69 |
72.84 |
69.92 |
68.84 |
56.11 |
55.79 |
|
Abbreviation
|
2019-05-23 03:28:30 |
310 |
|
87.86 |
64.84 |
54.63 |
78.99 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.05 |
67.65 |
73.79 |
41.72 |
32.43 |
71.48 |
37.80 |
59.51 |
46.48 |
74.27 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
28.48 |
22.76 |
30.69 |
76.31 |
65.66 |
66.61 |
58.18 |
57.96 |
46.95 |
45.91 |
|
Abbreviation
|
2019-04-27 11:37:29 |
363 |
PMSP |
87.27 |
64.29 |
53.55 |
78.07 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
87.48 |
66.96 |
73.46 |
44.71 |
34.92 |
69.93 |
31.93 |
56.75 |
47.90 |
74.10 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
28.22 |
25.92 |
30.83 |
76.17 |
65.02 |
66.14 |
55.10 |
54.50 |
40.61 |
40.44 |
|
Abbreviation
|
2019-05-08 08:50:27 |
404 |
FPN |
85.41 |
61.07 |
50.05 |
75.36 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
85.27 |
59.67 |
68.46 |
38.73 |
27.10 |
66.19 |
30.28 |
52.88 |
40.01 |
70.21 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
24.84 |
15.67 |
24.08 |
72.37 |
62.86 |
64.29 |
59.36 |
59.46 |
40.26 |
39.06 |
|
Abbreviation
|
2019-05-02 18:31:40 |
431 |
test |
88.39 |
68.20 |
56.61 |
79.97 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.82 |
68.46 |
74.50 |
47.64 |
34.44 |
71.94 |
41.21 |
59.97 |
49.49 |
76.29 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
30.73 |
25.07 |
31.37 |
76.50 |
67.99 |
69.28 |
61.37 |
61.21 |
48.06 |
47.90 |
|
Abbreviation
|
2019-05-20 15:50:04 |
432 |
|
88.80 |
71.79 |
59.33 |
80.51 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.69 |
67.14 |
72.88 |
49.50 |
33.03 |
72.87 |
43.83 |
62.25 |
48.72 |
77.69 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
28.95 |
37.05 |
37.94 |
74.75 |
69.98 |
70.43 |
70.52 |
69.36 |
55.42 |
55.60 |
|
Abbreviation
|
2019-06-02 14:26:13 |
437 |
rl |
89.10 |
70.92 |
59.38 |
80.95 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.12 |
71.14 |
76.58 |
52.24 |
37.60 |
73.48 |
44.15 |
60.97 |
48.01 |
78.15 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
27.38 |
33.44 |
37.96 |
78.11 |
70.09 |
71.44 |
66.44 |
65.44 |
53.01 |
52.82 |
|
Abbreviation
|
2019-05-09 03:54:13 |
446 |
|
88.16 |
66.72 |
55.78 |
79.51 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.41 |
67.51 |
74.23 |
45.26 |
33.43 |
71.42 |
37.57 |
59.66 |
47.76 |
75.71 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
25.87 |
24.14 |
29.93 |
76.59 |
67.58 |
69.26 |
61.68 |
61.16 |
49.41 |
49.11 |
|
Abbreviation
|
2019-05-15 11:34:56 |
438 |
|
89.48 |
72.32 |
61.30 |
81.53 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.38 |
70.22 |
75.68 |
53.79 |
37.27 |
73.86 |
46.42 |
62.95 |
50.38 |
78.96 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
27.13 |
41.36 |
40.03 |
77.12 |
72.16 |
72.85 |
71.62 |
71.35 |
56.43 |
57.15 |
|
Abbreviation
Contributors |
Description |
|
3rd0.5 |
|
2019-05-29 15:46:55 |
433 |
Test1 |
89.54 |
74.96 |
62.46 |
81.69 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.24 |
70.76 |
75.76 |
53.71 |
38.71 |
74.26 |
50.79 |
64.04 |
51.32 |
78.92 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
36.02 |
40.34 |
44.81 |
76.92 |
71.85 |
72.81 |
72.18 |
71.71 |
57.44 |
57.63 |
|
Abbreviation
|
2019-06-02 15:21:14 |
448 |
unet_a_0.25 |
83.75 |
56.31 |
43.82 |
73.33 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
84.94 |
58.81 |
68.23 |
25.20 |
27.49 |
62.93 |
19.19 |
49.79 |
35.21 |
67.05 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
18.24 |
8.75 |
20.64 |
73.85 |
51.79 |
54.64 |
42.19 |
43.70 |
33.20 |
30.52 |
|
Abbreviation
Contributors |
Description |
Motoki Kimura |
|
|
2019-05-22 15:11:56 |
453 |
test102 |
89.14 |
72.44 |
60.65 |
81.01 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.94 |
69.86 |
75.12 |
49.90 |
37.29 |
72.98 |
45.39 |
62.53 |
46.75 |
78.33 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
33.95 |
37.55 |
40.61 |
76.52 |
71.54 |
72.18 |
71.05 |
70.57 |
55.67 |
56.16 |
|
Abbreviation
|
2019-06-01 09:52:19 |
457 |
|
89.83 |
76.12 |
63.82 |
82.09 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.34 |
71.88 |
76.02 |
55.89 |
41.75 |
74.80 |
53.16 |
65.04 |
55.16 |
79.25 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
38.94 |
40.08 |
42.23 |
77.70 |
72.92 |
73.61 |
74.04 |
73.68 |
60.43 |
60.41 |
|
Abbreviation
|
2019-06-02 10:33:04 |
466 |
test |
31.90 |
7.51 |
3.39 |
24.08 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
39.96 |
0.99 |
8.39 |
0.13 |
0.02 |
4.01 |
0.41 |
0.40 |
0.13 |
0.45 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
0.90 |
0.11 |
0.29 |
6.77 |
2.13 |
2.32 |
0.41 |
0.05 |
0.01 |
0.00 |
|
Abbreviation
|
2019-09-16 03:01:48 |
468 |
trans_model_multi |
89.25 |
77.31 |
62.61 |
81.33 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.92 |
71.45 |
75.06 |
55.18 |
41.69 |
73.52 |
50.55 |
62.69 |
53.49 |
78.46 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
37.59 |
33.60 |
42.49 |
76.57 |
72.13 |
73.05 |
73.26 |
72.76 |
59.90 |
59.83 |
|
Abbreviation
|
2019-10-11 05:24:27 |
471 |
PCALab_HPPE3 |
88.11 |
67.31 |
55.95 |
79.43 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.37 |
67.53 |
73.91 |
46.32 |
35.06 |
71.30 |
38.92 |
59.24 |
47.20 |
75.55 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
26.71 |
26.21 |
30.67 |
76.45 |
67.41 |
69.06 |
61.38 |
60.86 |
48.77 |
48.17 |
|
Abbreviation
|
2019-10-18 16:10:06 |
473 |
|
88.04 |
72.34 |
58.29 |
79.56 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.30 |
69.93 |
74.20 |
52.31 |
39.62 |
70.55 |
38.68 |
58.62 |
50.45 |
75.73 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
32.74 |
25.93 |
31.67 |
76.38 |
68.69 |
69.94 |
67.56 |
66.62 |
54.46 |
53.42 |
|
Abbreviation
|
2019-11-14 12:45:38 |
494 |
pspnet_modify |
82.02 |
46.56 |
36.63 |
70.84 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
83.62 |
57.94 |
64.63 |
25.78 |
15.05 |
63.03 |
30.92 |
50.76 |
30.56 |
66.87 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
27.38 |
7.34 |
20.26 |
68.52 |
14.68 |
31.05 |
27.59 |
16.82 |
25.31 |
4.50 |
|
Abbreviation
|
2020-01-10 03:26:31 |
493 |
resnest101_asp_ocr |
88.67 |
67.98 |
57.55 |
80.23 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.72 |
69.43 |
75.46 |
50.64 |
36.12 |
72.81 |
39.14 |
60.69 |
50.70 |
76.62 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
33.58 |
25.55 |
30.80 |
77.17 |
69.49 |
70.34 |
63.30 |
63.07 |
48.85 |
48.54 |
|
Abbreviation
Contributors |
Description |
xiaoyang |
resnest101_asp_ocr |
|
2020-06-14 17:57:27 |
511 |
|
88.04 |
72.34 |
58.29 |
79.56 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.30 |
69.93 |
74.20 |
52.31 |
39.62 |
70.55 |
38.68 |
58.62 |
50.45 |
75.73 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
32.74 |
25.93 |
31.67 |
76.38 |
68.69 |
69.94 |
67.56 |
66.62 |
54.46 |
53.42 |
|
Abbreviation
|
2020-03-29 12:51:16 |
536 |
|
89.96 |
78.93 |
63.85 |
82.54 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.99 |
72.79 |
77.09 |
58.38 |
41.69 |
74.62 |
48.29 |
63.97 |
53.05 |
79.97 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
37.90 |
36.46 |
40.19 |
78.66 |
74.49 |
75.82 |
75.34 |
75.06 |
61.70 |
61.63 |
|
Abbreviation
|
2020-09-27 03:19:09 |
550 |
|
90.21 |
78.15 |
64.59 |
82.83 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
90.03 |
73.48 |
77.18 |
59.34 |
43.06 |
75.48 |
49.88 |
65.20 |
54.04 |
80.19 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
36.54 |
38.02 |
42.53 |
78.43 |
75.39 |
75.90 |
76.05 |
75.28 |
62.89 |
62.93 |
|
Abbreviation
|
2020-09-28 06:19:22 |
551 |
Tencent YouTu Lab |
91.36 |
77.44 |
65.70 |
84.73 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
92.09 |
75.18 |
80.10 |
60.40 |
44.79 |
77.19 |
49.39 |
66.14 |
55.59 |
81.97 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
35.09 |
37.72 |
41.68 |
81.64 |
77.96 |
79.44 |
77.12 |
76.06 |
62.10 |
62.42 |
|
Abbreviation
|
2020-09-16 12:14:23 |
549 |
|
88.89 |
68.84 |
59.11 |
80.43 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.48 |
70.57 |
75.80 |
52.14 |
41.67 |
73.32 |
42.28 |
61.62 |
46.79 |
75.91 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
30.48 |
29.84 |
32.43 |
77.96 |
72.76 |
72.77 |
69.05 |
67.20 |
51.19 |
50.02 |
|
Abbreviation
|
2021-04-26 03:02:03 |
553 |
|
89.61 |
74.52 |
62.22 |
81.89 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.77 |
72.05 |
76.67 |
56.77 |
41.32 |
73.81 |
46.37 |
62.31 |
53.73 |
78.67 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
32.32 |
34.99 |
38.36 |
78.32 |
73.85 |
75.03 |
71.51 |
71.17 |
58.70 |
58.79 |
|
Abbreviation
|
2020-09-16 04:39:40 |
555 |
res2_101 mix mnode |
89.72 |
76.73 |
63.27 |
82.07 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.62 |
72.42 |
76.42 |
57.80 |
42.72 |
74.06 |
47.79 |
63.43 |
53.25 |
79.52 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
35.22 |
34.59 |
40.42 |
77.69 |
74.22 |
74.67 |
75.16 |
73.65 |
61.09 |
61.62 |
|
Abbreviation
|
2020-09-26 06:59:39 |
543 |
AutoPP |
88.35 |
71.64 |
58.60 |
79.92 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
88.37 |
66.22 |
72.35 |
52.10 |
34.56 |
71.47 |
41.53 |
59.64 |
49.25 |
76.73 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
28.98 |
27.32 |
31.76 |
75.26 |
70.76 |
71.13 |
71.42 |
70.62 |
56.41 |
56.12 |
|
Abbreviation
|
2021-02-23 09:21:38 |
557 |
|
31.90 |
7.51 |
3.39 |
24.08 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
39.96 |
0.99 |
8.39 |
0.13 |
0.02 |
4.01 |
0.41 |
0.40 |
0.13 |
0.45 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
0.90 |
0.11 |
0.29 |
6.77 |
2.13 |
2.32 |
0.41 |
0.05 |
0.01 |
0.00 |
|
Abbreviation
|
2020-10-19 06:56:00 |
581 |
guangying_human_parsing |
89.34 |
75.20 |
61.57 |
81.46 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
89.38 |
72.02 |
75.91 |
57.48 |
40.11 |
73.56 |
45.70 |
62.41 |
53.14 |
78.35 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
33.37 |
32.69 |
36.71 |
77.58 |
71.52 |
72.92 |
71.06 |
70.10 |
58.87 |
58.53 |
|
Abbreviation
Contributors |
Description |
skyhaoxu |
|
|
2021-02-17 15:18:41 |
590 |
Hslms |
86.92 |
66.33 |
54.78 |
77.37 |
Details
background |
hat |
hair |
glove |
sunglasses |
upper-clothes |
dress |
coat |
socks |
pants |
86.12 |
66.26 |
71.74 |
47.98 |
38.93 |
69.86 |
41.49 |
57.30 |
40.70 |
71.47 |
jumpsuits |
scarf |
skirt |
face |
left-arm |
right-arm |
left-leg |
right-leg |
left-shoe |
right-shoe |
27.79 |
19.86 |
30.62 |
75.05 |
66.31 |
68.99 |
62.45 |
63.13 |
44.65 |
44.87 |
|
Abbreviation
|
2021-04-20 09:37:15 |