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Abstract: Visual representation learning is ubiquitous in various real-world applications, including visual comprehension, video un-
derstanding, multi-modal analysis, human-computer interaction, and urban computing. Due to the emergence of huge amounts of multi-
modal heterogeneous spatial /temporal/spatial-temporal data in the big data era, the lack of interpretability, robustness, and out-of-dis-
tribution generalization are becoming the challenges of the existing visual models. The majority of the existing methods tend to fit the
original data/variable distributions and ignore the essential causal relations behind the multi-modal knowledge, which lacks unified
guidance and analysis about why modern visual representation learning methods easily collapse into data bias and have limited general-
ization and cognitive abilities. Inspired by the strong inference ability of human-level agents, recent years have therefore witnessed great
effort in developing causal reasoning paradigms to realize robust representation and model learning with good cognitive ability. In this
paper, we conduct a comprehensive review of existing causal reasoning methods for visual representation learning, covering fundament-
al theories, models, and datasets. The limitations of current methods and datasets are also discussed. Moreover, we propose some pro-
spective challenges, opportunities, and future research directions for benchmarking causal reasoning algorithms in visual representation
learning. This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to
the forefront the urgency of developing novel causal reasoning methods, publicly available benchmarks, and consensus-building stand-

ards for reliable visual representation learning and related real-world applications more efficiently.
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1 Introduction

With the emergence of huge amounts of heterogen-
eous multi-modal data, including images/!™3l, videos!47],
texts/languages10 audios'"14; and multi-sensor(}5-19]
data, deep learning based methods have shown prom-
ising performance for various computer vision and ma-
chine learning tasks, e.g., the visual comprehension/20-23],
video understandingl24-27, visual-linguistic analysis[28-30],
and multi-modal fusionB!-33], etc. However, the existing
methods rely heavily upon fitting the data distributions
and tend to capture the spurious correlations from differ-
ent modalities, and thus fail to learn the essential causal
relations behind the multi-modal knowledge that have a
good generalization and cognitive abilities. Inspired by
the fact that most of the data in computer vision society
are independent and identically distributed (i.i.d.), a sub-
stantial body of literaturel®437 adopted data augmenta-
tion, pre-training, self-supervision, and novel architec-
tures to improve the robustness of the state-of-the-art
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deep neural network architectures. However, it has been
argued that such strategies only learn correlation-based
patterns (statistical dependencies) from data and may not
generalize well without the guarantee of the i.i.d
setting[38].

Due to the powerful ability of to uncover the underly-
ing structural knowledge about data generating processes
that allow interventions and generalize well across differ-
ent tasks and environments, causal reasoning3941 offers a
promising alternative to correlation learning. Recently,
causal reasoning has attracted increasing attention in a
myriad of high-impact domains of computer vision and
machine learning, such as interpretable deep learn-
ingl42-47 causal feature selection4860, visual comprehen-
sionl61=70] " visual robustness[’1-78], visual question answer-
ing(™84 and video understanding[®>92. A common chal-
lenge of these causal methods is how to build a strong
cognitive model that can fully discover causality and spa-
tial-temporal relations.

In this paper, we aim to provide a comprehensive
overview of causal reasoning for visual representation
learning, attract attention, encourage discussions, and
bring to the forefront the urgency of developing novel
causality-guided visual representation learning methods.
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Although there are some surveysl40 41, 9395 ahout causal
reasoning, these works are intended for general represent-
ation learning tasks such as deconfounding, out-of-distri-
bution (OOD) generalization, and debiasing. Differently,
our paper focuses on the systematic and comprehensive
survey of related works, datasets, insights, future chal-
lenges and opportunities for causal reasoning, visual rep-
resentation learning, and their integration. To present the
review more concisely and clearly, this paper selects and
cites related work by considering their sources, publica-
tion years, impact, and the cover of different aspects of
the topic surveyed in this paper. The overview of the
structure of this paper is shown in Fig.1. Overall, the
main contributions of this paper are given as follows.

Firstly, this paper presents the basic concepts of caus-
ality, the structural causal model (SCM), the independ-
ent causal mechanism (ICM) principle, causal inference,
and causal intervention. Then, based on the analysis, this
paper further gives some directions for conducting causal
reasoning on visual representation learning tasks. Note
that to the best of our knowledge, this paper is the first
that proposes the potential research directions for causal
visual representation learning.

Secondly, a prospective review is introduced to sys-
tematically and structurally review the existing works ac-
cording to their efforts in the above-pointed directions for
conducting causal visual representation learning more ef-
ficiently. We focus on the relation between visual repres-
entation learning and causal reasoning and provide a bet-
ter understanding of why and how existing causal reason-
ing methods can be helpful in visual representation learn-
ing, as well as providing inspiration for future research
and studies.

Thirdly, this paper explores and discusses future re-
search areas and open problems related to using causal
reasoning methods to tackle visual representation learn-
ing. This can encourage and support the broadening and
deepening of research in the related fields.

The remainder of this paper is organized as follows.
Section 2 provides the preliminaries, including the basic
concepts of causality, the SCM, the ICM principle, caus-
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al inference, and causal intervention. Section 3 discusses
the ways to use causal reasoning to learn robust features,
which are the key techniques for visual representation
learning. Section 4 reviews some recent visual learning
tasks, including visual understanding, action detection
and recognition, and visual question answering, including
the discussions about the existing challenges of these
visual learning methods. Section 5 reviews the related
causality-based visual representation learning works sys-
tematically. Section 6 provides a review of existing caus-
al datasets for visual learning. Section 7 proposes and dis-
cusses some future research directions and finally Section 8
gives the conclusions.

2 Preliminaries

2.1 Causal learning and reasoning

As the sentence “correlation is not causation” says,
two variables are correlated does not mean that one of
them causes the other. Actually, statistical learning mod-
els the correlations of data. By observing a sufficient
amount of i.i.d. data, the statistical learning method can
perform considerably well under i.i.d. settings. However,
when facing problems that do not satisfy i.i.d. assump-
tions, the performance of these methods often seems poor
(e.g., image recognition models tend to predict “bird”
when seeing “sky” in the image, since bird and sky usu-
ally appear simultaneously in the dataset). Causal learn-
ingB9 is different from statistical learning, which aims to
discover causal relationships beyond statistical relations.
Learning causality requires machine learning methods not
only to predict the outcome of i.i.d. experiments but also
to reason from a causal perspective. Causal reasoning can
be divided into three levels. The first level is association.
The statistical machine learning methods mentioned
above belong to this level. A typical question of associ-
ation is “How would the weather change when the sky is
turning grey”, which asks about the association between

“weather” and “the appearance of the sky”. The second
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Overview of the structure of this paper, including the discussion of related methods, datasets, challenges, and the relations

among causal reasoning, visual representation learning, and their integration
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level is intervention. An intervention-based question asks
about the effect of the intervention (e.g., “Would I be-
come stronger if I go to the gym every day?”). Interven-
tion-based questions require us to answer the outcome
when taking specific treatment, which can not be
answered by only learning data associations (e.g., If we
only learn the associations, then if we observe that a man
who goes to the gym every day may not be stronger than
a professional athlete, we may conclude that going to the
gym not always makes you stronger). The third level is
counterfactual. A typical form of a counterfactual ques-
tion is “What if I had ---”, which focuses on the outcome
when the condition is not realized. Counterfactual infer-
ence aims to compare different outcomes under the same
condition, but the antecedent of the counterfactual ques-
tion is not real.

2.2 Structural causal models

The SCM considers the formulation of a causality
style. Assume that we have a set of variables Xi,
Xo,---,X,, each variable is a vertex of a causal graph
(i.e., a directed acyclic graph (DAG) describes causal re-
lations of variables). Then, those variables could be writ-
ten as the outcome of a function:

Xi = fi(PA;,,U;) = P(X;|PA;), i=1,---,n (1)

where PA,; indicates the parents of X; in the causal
graph, and U; refers to unmeasured factors such as noise.
The deterministic function gives a mathematical form of
the effect of direct causes of X; on the variable X;. Using
the graphical causal model and SCM language, we can
express joint distributions as follows:

P(X1, X2, , Xp) = ﬁP(XJPAi)- 2)

=1

Equation (2) is called a product decomposition of the
joint distributions. After the decomposition and graphic-
al modeling, the causal relations and effects of a dataset
can be represented as the causal graph and the joint dis-
tribution.

2.3 Independent causal mechanism

The independent causal mechanism principle[ can be
expressed as follows:

ICM principle. The causal generative process of a
system's variables is composed of autonomous modules
that do not inform or influence each other. In the probab-
ilistic case, this means that the conditional distribution of
each variable given its causes (i.e., its mechanism) does
not inform or influence the other conditional distribu-
tions.

The ICM principle describes the independence of caus-

al mechanisms. If we conceive that the real world is com-
posed of modules in variable styles, then the modules
could represent the physically independent mechanisms of
the world. When applying the ICM principle to the disen-
tangled factorization (2), it can be written asl:

1) Changing (or performing an intervention upon) one
mechanism P(X;|PA;) does not change any of the other
mechanisms P(X,;|PA;) (i # j).

2) Knowing some other mechanisms P(X;|PA;) does
not give us information about a mechanism P(X;|PA;)
(i # )

The ICM principle guarantees that our intervention
on one mechanism does not affect others, which further
reveals the possibility of transferring knowledge across
domains that have the same modules.

2.4 Causal inference

The purpose of causal inference is to estimate the out-
come shift (or effect) of different treatments. Let symbol
A denote a treatment that refers to an action that ap-
plies to a unit. For example, if we have a medicine A, let
A =1 denote applying medicine A and A =0 denote not
applying medicine A, then A =1 is a treatment, and the
recovery of the patient is the outcome of the treatment
A = 1. Under this condition, the aim of causal inference is
to uncover the effect of applying treatment A. A counter-
factual outcome is the potential outcome of an action
that has not been taken. For example, if we take treat-
ment A = 1, then the outcome of A = 0 is counterfactual.
Then the average treatment effect (ATE) of treatment
A =1 could be written as

ATE = E[Y(A=1)-Y(A=0)] (3)

where Y (A =a) denotes the potential outcome of
treatment A = a. If we have taken treatment A = 1, then
Y (A = 0) is the counterfactual outcome.

The goal of causal inference is to estimate the treat-
ment effects given the observational data, which is usu-
ally incomplete in real-world scenarios due to the cost
and moral problems. From a counterfactual perspective,
we cannot always obtain a no-treatment outcome if we
apply the treatment. Thus, we need to adopt causal infer-
ence to analyze the effect of a certain treatment.

2.5 Causal intervention

Causal intervention for machine learning aims to cap-
ture the causal effects of interventions (i.e., variables),
and take advantage of causal relations in datasets to im-
prove model performance and generalization ability. The
basic idea of causal intervention is to use an adjustment
strategy that modifies the graphical model and manipu-
lates conditional probabilities to discover causal relation-
ships among variables. In this section, we review two ad-
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justment strategies: back-door adjustment and front-door
adjustment.
2.5.1 Back-door adjustment

Assume that we want to gauge the causal effect
between X and Y by Bayes’ rules; we can have

P(Y|X) = ZPsz 2|X). 4)

This conditional distribution could not represent the
true causal effect of X on Y, due to the existence of back-
door path X + Z — Y. Variable Z here is a confounder
that not only affects pre-intervention X but also the out-
come Y, which would make the conditional distribution a
collective effect of X and Z, and thus leads to spurious
correlation. To eliminate the spurious correlation intro-
duced by the back-door path, the back-door adjustment
uses do-operator to calculate the intervened probability
P(Y|do(X)) instead of the conditional probability
P(Y|X):

P(Y|do(X ZPsz (2)- ()

Compared with P(Y|X), P(Y|do(X)) is replaced with
the conditional distribution P(z|X) with the marginal dis-
tribution P(z). Fig.2 is a graphical view of the do-operat-
or. The edge from Z to X is deleted in the intervened
causal graph to block the back-door path X + Z — Y}
thus, X and Z become independent after the interven-
tion. After the back-door adjustment, the intervened dis-
tribution P(Y|do(X)) can remove the spurious correla-
tion between X and Z and calculate the true causal ef-
fect of variable X. Backdoor adjustment measures the
causal effect of a variable by finding and blocking back-
door paths points to it.

Backdoor adjustment
- -

Fig.2 An example of back-door adjustment, the back-door
path from X to Y is blocked by cutting off the edge from Z to X .

2.5.2 Front-door adjustment

The back-door criterion may not be satisfied in some
causal graphical patterns (e.g., no back-door paths exist
in causal graphs, or variables that block the back-door
paths are unobserved). In such a case, the front-door ad-
justment pattern can be applied to estimate causal ef-
fects. As Fig.3 shows, assuming that the variable Z is an
unobserved variable, the back-door adjustment becomes
invalid because the marginal distribution P(z) is not ob-
served. However, if we have an observed mediator vari-
able W on the front-door path X — W — Y| then we can
identify the effect of X on W directly since the back-door
path from X to W is blocked by the collider at Y:

@ Springer
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Fig.3 Back-door criterion is not satisfied since Z is an unob-
served variable.

P(W|do(X)) = P(W|X). (6)

Note that there is a back-door path from W to Y:
W+« X<+ Z—Y, which can be blocked by applying
back-door adjustment on X:

P(Y|do(W ZP Y|W, z)P(z). (7)

And the total effect of X on Y could be written by
summing on W:

P(Y|do(X Z P(Y|do(W = w))P(W = w|do(X)).

(®)

Then, the front-door adjustment formulation is ob-
tained by applying (6)—(8):

P(Y|do(X ZZP YW = w,z)P(W = w|z)P(z).
' (9)

The front-door adjustment identifies the effect of X
on Y by applying the do-operator twice, one at the medi-
ator variable W and the other at variable X that blocks
the back-door path. In this way, the unobserved variable
Z can be bypassed in intervention.

2.5.3 Back-door or front-door?

The back-door adjustment requires us to determine
what the confounder is in advance. Thus, the back-door
adjustment is effective when the confounder is observable.
However, in visual domains, data biases are complex, and
it is hard to know and disentangle different types of con-
founders. Especially for some challenging tasks like the
visual-linguistic question reasoning where the confoun-
ders in visual and linguistic modalities are not always ob-
servable. Therefore, the front-door causal intervention
gives a feasible way to calculate P(Y'|do(X)) when we
cannot explicitly represent the confounder.

3 Causality-aware feature learning

Traditional feature learning methods usually learn the
spurious correlation introduced by confounders. This will
reduce the robustness of models and make models hard to
generalize across domains. Causal reasoning, a learning
paradigm that reveals the real causality from the out-
come, overcomes the essential defect of correlation learn-
ing and learns robust, reusable, and reliable features. In
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this chapter, we review the recent representative causal
reasoning methods for general feature learning, which
mainly consist of three main paradigms: 1) structural
causal model (SCM) embedded, 2) applying causal inter-
vention/counterfactual, and 3) Markov boundary (MB)
based feature selection.

For embedding the SCM, Mitrovic et al.[%l proposed
representation learning via invariant causal mechanisms
(RELIC) to address self-supervised learning problems and
achieved competitive performance in terms of robustness
and out-of-distribution generalization on ImageNet. Shen
et al.l%" proposed a disentangled generative causal repres-
entation (DEAR) learning method for causal controllable
generation on both synthesized and real datasets.

To apply causal intervention or counterfactual infer-
ence for feature learning, Huang et al.[3] proposed a caus-
al intervention-based deconfounded visual grounding
method to eliminate the confounding bias. Zhang et al.[o]
present a causal inference based weakly-supervised se-
mantic segmentation framework. Tang et al.[67] present a
causal inference framework that disentangles the paradox-
ical effects of the momentum to remove the confounder of
long-tail classification. Chen et al.34 proposed a counter-
factual critic MultiAgent training (CMAT) approach to
learn the visual context properly.

Causal feature selection aims to find a subset of fea-
tures from a large number of predictive features to re-
duce computational cost and build predictive models for
variables of interest. Recent causality-based feature selec-
tion methods use Bayesian network (BN) and Markov
boundary (MB) to identify potential causal features. BN
is used as a DAG representing the causal relations
between variables, and MB implies the local causal rela-
tionships between the class variable and the features in
its MB. Since the BN of variables may be very large and
hard to compute, current causal-based methods focus on
identifying the MB as a variable or a subset of the MB.
For example, Wu et al.®9 introduced the PCMasking
concept to explain a type of incorrect CI tests in MB dis-
covery and proposed a cross-check and complement MB
discovery (CCMB) algorithm to solve the incorrect test
problem. Yu et al.lf0 presented theoretical analyses on
the conditions for MB discovery in multiple intervention-
al datasets and designed an algorithm for learning MBs
from multiple interventional datasets. Yu et al.[8! formu-
lated the causal feature selection problem with multiple
datasets as a search problem and gave the upper and
lower bounds of the invariant set, then proposed a multi-
source feature selection algorithm. Yang et al.b% pro-
posed the concept of N-structures and then designed an
MB discovering subroutine to integrate MB learning with
N-structures to discover MB while distinguishing direct
causes from direct effects. Yu et al.l’3] proposed a multi-
label feature selection algorithm, multi-label feature selec-
tion to causal structure learning (M2LC), which learns
the causal mechanism behind the data and is able to se-
lect causally informative features and visualize common

features. Guo et al.l’ll proposed an error-aware Markov
blanket learning algorithm to solve the conditional inde-
pendence test error in causal feature selection. Ling et
al.b7 proposed an efficient local causal structure learning
algorithm, local causal structure learning by feature selec-
tion (LCS-FS), which speeds up parent and children dis-
covery by employing feature selection without searching
for conditioning sets. Yu et al.l’%l proposed a multiple im-
putation MB framework MimMB for causal feature selec-
tion with missing data. MimMB integrates data imputa-
tion with MB learning in a unified framework to enable
the two key components to engage with each other.
Finding causal features improves the explanatory cap-
ability and robustness of models. Causal feature selection
methods can provide a more convincing explanation for
prediction than correlation-based methods. As the ICM
principle implies, the underlying mechanism of the class
variable can be learned from causal relations and thus
can be transferred across different settings or environ-
ments. Although the existing causal feature learning
methods achieve promising performance, most of them fo-
cus on general feature learning without considering a
more specific problem, visual representation learning.

4 Visual representation learning: State-
of-the-art

Visual representation learning has made great pro-
gress in recent years, which can utilize spatial or/and
temporal information to complete specific tasks, includ-
ing visual understanding (object detection, scene graph
generation, visual grounding, visual commonsense reason-
ing), action detection and recognition, and visual ques-
tion answering, etc. In this section, we introduce these
representative visual learning tasks and discuss the exist-
ing challenges and necessity of applying causal reasoning
to visual representation learning.

Object detection aims to determine where objects are
located in a given image (object localization) and to
which category each object belongs to (object classifica-
tion) and label them with rectangular bounding boxes
(BBs) to show their confidence in existence. In image ob-
ject detection, deep learning frameworks for object detec-
tion are divided into two types. The first type is to fol-
low the traditional object detection process, generating
region proposals firstly and then classifying each propos-
al into a different object class. The other type is to treat
object detection as a regression or classification problem
and adopt a unified framework to directly obtain the fi-
nal predictions (category and location). Region proposal-
based methods mainly include R-CNN8] spatial pyram-
id pooling (SPP-Net)®) Fast R-CNN[I0  Faster R-
CNN[OU feature pyramid network (FPN)[I02 region-
based fully convolutional Network (R-FCN)I03 and
Mask R-CNNI| some of which are interrelated (e.g.,
SPP-net modifies R-CNN with an SPP layer). Based on
regression/classification, the methods mainly include
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MultiBox[195], AttentionNet[l96] G-CNNI[07, YOQLOIM8]
single shot MultiBox detector (SSD)10 YOLOv2[10],
deeply supervised object detector (DSOD)[!1 and decon-
volution single shot detector (DSSD)!2l. The correla-
tions between these two pipelines are connected by an-
chors introduced in Faster R-CNN. In video saliency ob-
ject detection, extending state-of-the-art saliency detect-
ors from images to videos is challenging. Li et al.[113]
presented a flow-guided recurrent neural encoder
(FGRNE), which works by enhancing the temporal coher-
ence of the per-frame feature by exploiting both motion
information in terms of optical flow and sequential fea-
ture evolution encoding in terms of long short-term
memory (LSTM) networks. Li et al.ll!¥ developed a
multi-task motion-guided video salient object detection
network, which learns to accomplish two sub-tasks using
two sub-networks, one sub-network is for salient object
detection in still images and the other one is for motion
saliency detection in optical flow images. Yan et al.[l15]
presented an effective video saliency detector that con-
sists of a spatial refinement network and a spatiotempor-
al module. By utilizing the generated pseudo-labels to-
gether with a part of manual annotations, the detector
can learn spatial and temporal cues for both contrast in-
ference and coherence enhancement. For video salient ob-
ject detection, how to effectively take object motion into
consideration and obtain robust spatial-temporal informa-
tion is crucial in video salient object detection. However,
some non-object, occlusion, motion blur, and lens move-
ment make the model hard to concentrate on the true in-
teresting object area.

Scene graph generation (SGG) aims to describe ob-
ject instances and relations between objects in a scene.
With its powerful representation ability, SGG can en-
code images(!16: 117 and videos[!1$ 119 as its abstract se-
mantic elements without any restrictions on the attrib-
utes, types, and relations between objects. Therefore, the
task of SGG is to build a graph structure that associates
its nodes and edges well with objects in the scene and
their relations, where the key challenge task is to
detect/recognize relations between objects. Currently,
SGG can be divided into two classes: 1) with facts alone
and 2) introducing prior information. Besides, these SGG
methods pay more attention to the methods with facts
alone, including CRF-based (conditional random field)
SGGMT 1201 VTransE-based (visual translation embed-
ding) SGG[21,122] RNN/LSTM-based SGG[!23: 124 Faster
RCNN-based SGGI25, 126 graph neural network
(GNN)[127. 128] - etc. Furthermore, SGG adds different
types of prior information, such as language priors/!29],
knowledge priors[130, 131 visual contextual information[!32]
visual cuel!33], etc. Fig.4 shows the related work on SGG,
and it can be clearly seen that most of the methods use
the GNN model or introduce relevant prior information
when conducting SGG. Existing SGG methods are still
far from building a practical knowledge base. There ex-
ists a serious conditional distribution bias of the relation-
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ship in SGG methods. For example, knowing that the
subject and object are person and head it is easy to guess
that the relationship is that a person has a head.

SGG methods
CRF

TranseE

. 'I ,
RNN/LSTM

Others

Priors

Video/Pixel level

Fig.4 Classification and statistics of SGG methods

Visual grounding usually involves two modalities,
visual and linguistic data. This task aims to locate the
target object in the image according to the corresponding
object description (title or description) and the given im-
age. When locating the target object, it is necessary to
understand the input description information, and integ-
rate the information of the visual modality for localiza-
tion prediction. Currently, visual grounding methods can
be classified into three types: fully supervised[134-141]
weakly supervised42, and unsupervised(143l. First, the
fully supervised methods contain box annotations with
object-phrase information. This method can be further di-
vided into two-stage methods[!3% 136, 138, 141] and one-stage
method[139. The two-stage approach is to extract candid-
ate proposals and their features in the first stage through
a region proposal network (RPN)[I0U or traditional al-
gorithms (Edgebox[14 Selective Searchl145]). Second,
weakly supervised methods[!46: 1471 only have images and
corresponding sentences, and no box annotations for ob-
ject-phrases in the sentences. Due to the lack of mapping
between phrases and boxes, weak supervision will addi-
tionally design many loss functions, such as designing re-
construction loss, introducing external knowledge, and
designing loss functions based on image-caption match-
ing. Third, there is no image-sentence information in the
unsupervised method. Wang and Special'4s] used off-the-
shelf approaches to detect objects, scenes and colors in
images and explore different approaches to measuring se-
mantic similarity between the categories of detected visu-
al elements and words in phrases. To locate the object in-
stance described by a natural language referring expres-
sion in an image, some referring expression comprehen-
sion methods are proposed. Yang et al.[149] proposed a dy-
namic graph attention network to perform multi-step
reasoning by modeling the relationships among the ob-
jects in the image and the linguistic structure of the ex-
pression. Yang et al.!34 proposed a cross-modal relation-
ship extractor (CMRE) to adaptively highlight objects
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and relationships with a cross-modal attention mechan-
ism, and represented the extracted information as a lan-
guage-guided visual relation graph. Furthermore, Yang et
al.[22] proposed a cross-modal relationship extractor to ad-
aptively highlight objects and relationships (spatial and
semantic relations) related to the given expression with a
cross-modal attention mechanism, and represent the ex-
tracted information as a language-guided visual relation
graph. Yang et al.l%0 proposed a scene graph-guided
modular network (SGMN), which performed reasoning
over a semantic graph and a scene graph with neural
modules under the guidance of the linguistic structure of
the expression. However, due to the existence of linguist-
ic and visual biases, most visual grounding models are
heavily dependent on specific datasets, without good
transfer ability and generalization performance.

Due to the success of BERT-related models in the
field of NLP, researchers have begun to focus on more a
challenging multi-modal reasoning task, visual common-
sense reasoning (VCR). The VCR task needs to combine
image information with the understanding of questions,
and obtain the correct answer as well as the reasoning
process based on the commonsense. Given an image, the
image contains a series of bounding boxes with labels. In
general, VCR can be divided into two sub-tasks: Q — A
task is choosing an answer based on the question; and
QA — R task is reasoning based on the question and the
answer, explaining why the answer was chosen. Due to
the challenging nature of VCR, there are actually relat-
ively few existing studies. Some of them resort to design-
ing specific model architectures(!51-155], Recognition to
cognition networks (R2C)[%1] implemented this task with
a three-step approach, associating text with objects in-
volved, linking answers with corresponding questions and
objects, and finally, reasoning about shared representa-
tions. Inspired by brain neuron connectivity, CCNI[52] dy-
namically modeled the visual neuron connectivity, which
is contextualized by the queries and responses. Heterogen-
eous graph learning (HGL)[53 leveraged visual answer-
ing and dual question answering heterogeneous graphs to
seamlessly connect vision and language. Zhang et al.[l5]
proposed a multi-level counterfactual contrastive learn-
ing network for VCR by jointly modeling the hierarchic-
al visual contents and the inter-modality relationships
between the visual and linguistic domains. Recently,
BERT-based pre-training methods have been extensively
explored in vision and language domains. In general, most
of them adopt a pre-training-then-transfer scheme and
achieve significant performance improvements on the
VCRI56-158] benchmarks. These models are usually pre-
trained on large-scale multi-modal datasets (e.g., concept
captioning!™®]) and then fine-tuned on VCR. At present,
the promising performance of VCR is generally attrib-
uted to the pre-trained big model and the prior external
knowledge. Compared with simple vision-linguistic do-
main tasks, the introduction of external knowledge brings

new challenges: 1) How to retrieve limited supporting
knowledge from external knowledge bases that contain
massive data. 2) How to effectively integrate external
knowledge with visual and linguistic features. 3) The
reasoning process gives interpretability needs supporting
facts, which depends heavily on the language structure
design.

The task of action detection and recognition includes
two aspects, one is to identify all action instances in the
video, and the other one is to localize actions spatially
and temporally. Nowadays, spatial-temporal action detec-
tion or recognition models can be divided into two cat-
egories, the first onel6: 7 160-167] j5 to model spatial-tempor-
al relationships based on convolutional neural networks
(CNNs), and the other onel'®171 is based on video
transformer structures. Besides, the skeleton-based mod-
elsl1727175] have recently attracted great attention. Sun et
al.l61] proposed an actor-centric relational network (AC-
RN), which used two-stream to extract the central char-
acter feature and global background information from the
input clip, and then performed feature fusion for action
classification. Feichtenhofer et al.l165 proposed a two-
stream model named SlowFast networks that contains a
Slow pathway and a Fast pathway. Bertasius et alll69,
simply extended the ViT[76 design to video by propos-
ing several scalable schemes for space-time self-attention.
Arnab et al.l77 proposed pure-transformer architectures
for video classification, including several variants of the
model by factorizing the spatial and temporal dimensions
of the input video. Although great progress has been
made in spatial-temporal action detection and recogni-
tion based on the CNNs or transformer models, there ex-
ist some critical problems in terms of the robustness and
the transferability of the models. The existing action de-
tection and recognition models rely heavily on scenes and
objects. When a model is well-trained in one dataset, it is
hard to be generalized to another dataset with different
scenes. Additionally, the methods are easily focused on
some static appearance or background information rather
than the true motion area due to the essential correla-
tion learning in most of the models. This may be harmful
to the reliability of the model, as well as the robustness of
the learned spatial-temporal representations. Causal reas-
oning has the powerful ability to uncover the underlying
structural knowledge about human actions that build a
strong cognitive model that can fully discover causality
and spatial-temporal relations.

Visual question answering (VQA) is a vision-language
task that has received much attention recently. The ob-
jective of VQA is: Given the image/video and a related
question, a machine needs to reason over visual elements
and general knowledge to infer the correct answer. The
attention mechanism is widely used in VQA models,
which aim to focus on the critical part of the image and
question, and find cross-modality correlations. The
UpDnl'78 framework is a typical conventional VQA meth-
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od based on attention, which uses a top-down attention
LSTMLU[7] for the fusion of visual and linguistic features.
Besides using LSTM, the transformer[!8) can also be ad-
apted to the VQA task, thanks to its powerful scaled dot-
product attention block. Visual-language pre-training
(VLP) models based on BERT[81 show remarkable per-
formance in the VQA task. VILBERTI[5 is a BERT-
based visual and language pre-training framework, which
uses a self-attention transformer block[!80] to model in-
modality relation and develop a co-attention transformer
block to compute cross-modality attention score, and it fi-
nally achieves a state-of-the-art on four visual-language
tasks including VQA at that time. Compared with the
image QAI29 30, 178, 182, 183]  the video question answering
(VideoQA) task is much more challenging due to the ex-
istence of extra temporal information. To accomplish the
VideoQA problem, the model needs to capture spatial,
temporal, visual, and linguistic relations to reason about
the answer. To explore relational reasoning in VideoQA,
Xu et al.['84 proposed an attention mechanism to exploit
the appearance and motion knowledge with the question
as guidance. Later on, some hierarchical attention and co-
attention-based methods are proposed to learn appear-
ance-motion and question-related multi-modal interac-
tions. Le et al.['85] proposed a hierarchical conditional re-
lation network (HCRN) to construct sophisticated struc-
tures for representation and reasoning over videos. Jiang
and Han[186] introduced a heterogeneous graph alignment
(HGA) network. Huang et al.'87 proposed a location-
aware graph convolutional network to reason over detec-
ted objects. Lei et al.l'88] employed sparse sampling to
build a transformer-based model named CLIPBERT and
achieve end-to-end video-and-language understanding.
Liu et al.[189 proposed a hierarchical visual-semantic rela-
tional reasoning (HAIR) framework to perform hierarchic-
al relational reasoning. Although hierarchical attention
mechanisms successfully improve the visual-language task
performance, these models remain with a strong reliance
on modality bias2% 190 and tend to capture the spurious
linguistic or visual correlations within the images/videos,
and thus fail to learn the multi-modal knowledge with
good generalization ability and interpretability.

5 Causality-aware visual representation
learning

According to the above-discussed visual representa-
tion learning methods, the current machine learning, es-
pecially representation learning, faces several challenges:
1) lack of interpretability, 2) poor generalization ability,
and 3) over-reliance on correlations of data distribution.
Causal reasoning offers a promising alternative to ad-
dress these challenges. The discovery of causality helps to
uncover the causal mechanism behind the data, allowing
the machine to understand better why and to make de-
cisions through intervention or counterfactual reasoning.

@ Springer

Machine Intelligence Research 19(6), December 2022

Since Section 3 has reviewed the recent causal reasoning
methods for general feature learning, it provides a good
theoretical basis for further research on causal reasoning
with specific visual representation learning tasks. In this
section, we summarize some recent approaches for causal
visual representation learning, as shown in Table 1.
The causal visual representation learning is an emerging
research topic and has appeared since the 2020s. The re-
lated tasks can be roughly categorized into several main
aspects: 1) causal visual understanding, 2) causal visual
robustness, and 3) causal visual question answering. In
this section, we discuss these three representative causal
visual representation learning tasks.

5.1 Causal visual understanding

Visual understanding contains several tasks, such as
object detection, scene graph generation, visual ground-
ing, visual commonsense reasoning, etc. However, some
challenges exist in these tasks: 1) For image/video object
saliency detection, some non-object, occlusion, motion
blur, and lens movement make the model hard to concen-
trate on the true interesting object area. To this end,
causal reasoning can make the model focus on the essen-
tial interesting object area by learning robust and reli-
able visual representations. 2) For the SGG problem that
contains superficial bias and insufficient generalization
ability, causal reasoning can be introduced to mitigate
these problems well. For example, an item such as towel
is used to bathe in the bathroom, but is used to wash the
face in the office. Introducing causal reasoning into SGG
can generalize the functionality of an item to different
scenarios. 3) Due to the existence of linguistic and visual
biases, most visual grounding models are heavily depend-
ent on specific datasets without good transfer ability and
generalization performance. This problem can be mitig-
ated by causal reasoning methods, which learn robust and
transferable features to mitigate the visual and linguistic
biases. 4) For visual commonsense reasoning, linguistic
biases may directly affect the reasoning performance.
Generally, the superficial correlations captured by the ex-
isting VCR models can be mitigated by introducing caus-
ality that integrates external knowledge and visual and
linguistic features into a robust and discriminative repres-
entation space. Non-causal visual understanding methods
are easily affected by confounders in visual content. Illu-
mination, position, backgrounds, co-occurrence of objects,
and other visual factors are confounders that are inevit-
able in common settings. With traditional correlation
learning, spurious correlations introduced by the con-
founders degrade the robustness of representation learn-
ing. For example, since the co-occurrence of “bird” and
“sky” are high, the model would learn a strong correla-
tion between them. Thus, when seeing a picture of a
floating balloon that also contains “sky”, it would also
make a confident prediction that it is a picture of a bird.
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Table 1 Recent causal visual representation learning methods, tasks, basic models, and causal reasoning types

Author & Year Tasks

Basic models

Types of causal reasoning

Agarwal et al.[191] 2020 Visual question answering

Chen et al.[81 2020 Visual question answering

Zhang et al.l65] 2020 Weakly-supervised semantic

segmentation

Tang et al.[66] 2020 Scene graph generation

Tang et al.[671 2020 Long-tailed classification

Wang et al.[68] 2020 IC & VQA & VCR

Yue et al.[74 2020 Few-shot learning

Hu et al.[721 2021 Class incremental learning

Yue et al.[731 2021 Unsupervised domain adaptation

Mao et al.[77 2021 Domain adaptation

Tang et al.[711 2021 Adversarial defense

Wang et al.[611 2021 Visual recognition

Yue et al.[62] 2021 Zero-shot & Open-set visual

recognition

Huang et al.[63] 2022 Visual grounding

Zhang et al.[1931 2020 Visual question answering

Yang et al.[821 2021 Visual question answering

Niu et al.[811 2021 Visual question answering

Li et al.[194 2022 Video question answering

Liu et al.[195] 2022 Visual recognition

Liu et al.[196] 2022 Motion forecasting

Lv et al.[197] 2022 Domain generalization

Lin et al.[198] 2022 Video anomaly detection

Lin et al.[199] 2022 Salient object detection

Liu et al.[2001 2022 Event-level video question

answering

GANI192]
ccCs#

Pseudo-mask generation

Unbiased training
De-confounded training

R-CNN

GAN & VAE

GAN

Instrumental variable intervention
Adversarial training

CNN, BERTI[81], Attention[180]
BERTI[81

Attention[80]

CF-VQAB!]

IGV[194]

CNN/Transformer, CCD[195]
Encoder-decoder!196]

CIRL197]

UVADI198]

USODI199]

Transformer, CMCIR/[200]

Counterfactual sample synthesising
Counterfactual sample synthesising

Backdoor adjustment

Causal inference
Causal inference
Causal intervention
Backdoor adjustment
Causal inference
Causal inference
Causal inference
Causal intervention
Causal inference

Counterfactual inference

Causal inference
Backdoor adjustment
Front-door adjustment
Counterfactual inference
Invariant grounding
Causal context debiasing
Causal invariant learning
Causal intervention

Causal intervention, counterfactual
inference

Causal intervention

Causal intervention

Causal reasoning provides a good solution to address
the above problem. By replacing the conditional distribu-
tion with the intervened distribution, the spurious correl-
ation can be eliminated, and the machine can learn the
real causality. Applying intervention in the training pro-
cedure is a widely used implementation of the causal in-
tervention. In the visual recognition task, Wang et al.[61]
combined adversarial training with causal intervention,
modeled the different causal effects of mediators and con-
founders, and designed an adversarial training pipeline to
improve the effect of mediators while suppressing the ef-
fect of confounders. Yue et al.[02l applied counterfactual
inference to zero-shot and open-set visual recognition by
proposing a generative causal model to generate counter-
factual samples. A confounding effect also exists in the
visual grounding task, Huang et al.[53] proposed a decon-
founded visual grounding framework by conducting inter-
ventions on linguistic features. For the weakly-supervised
semantic segmentation task, Zhang et al.65 used the
structural causal model to formulate the causalities

between components, then constructed a confounder set
and removed confounders by back-door adjustment. The
prior bias is also a non-trivial problem in the scene graph
generation (SGG) task. To reduce the negative impact of
training bias in scene graph generation, Tang et al.[66]
built a causal graph and extracted counterfactual causal-
ity from the trained graph to infer the causal effects of
training bias and then remove the negative bias. Besides,
causal reasoning can replace the traditional re-weighting
and re-sampling methods in resolving long-tailed distribu-
tion problems. Tang et al.l7 analyzed that the mo-
mentum in stochastic gradient descent (SGD) introduces
the unbalanced sample distribution and then proposed to
use counterfactual inference in the test stage to detect
and remove the causal effect of the momentum item.
Wang et al.l8] proposed an unsupervised commonsense
learning framework to learn intervened visual features by
back-door adjustment, which can be used in the down-
stream task as image captioning, visual question answer-
ing, and visual commonsense reasoning. Liu et al.[19] es-
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tablished a SCM to uncover the causal relevance among
contextual priori, object feature, contextual bias, and fi-
nal prediction in multi-target visual tasks. Liu et al.[L9]
introduced a causal formalism of motion forecasting,
which casts the problem as a dynamic process with three
groups of latent variables, namely invariant variables,
style confounders, and spurious features. Lin et al.[19]
proposed a causal graph to analyze the confounding ef-
fect of the pseudo label generation process for unsuper-
vised video anomaly detection. Lin et al.ll9] proposed a
causal-based debiasing framework to disentangle the un-
supervised salient object detection from the impact of
contrast distribution bias and spatial distribution bias.

5.2 Causal visual robustness

The ubiquitous spurious correlation learned by deep
learning models reduces the model robustness, which is a
potential vulnerability of the conventional deep learning
paradigm. In this perspective, the causal learning
paradigm can be introduced to avoid the presence of con-
founding effects and make the model more robust[201],

Confounders are widespread in visual robustness prob-
lems, including few-shot learning, class-incremental learn-
ing, domain adaptation, generative model, etc. Yue et
al.[4 uncovered that pre-trained knowledge is a con-
founder in fewshot learning and developed a few-shot
learning paradigm by introducing back-door adjustment
to control the pre-trained knowledge. The confounding ef-
fect can be leveraged by attackers, Tang et al.’}l pro-
posed an instrumental variable[202] estimation-based caus-
al regularization method for adversarial defense. Hu et
al.["2 explained the catastrophic forgetting effect in class-
incremental learning in terms of causality: the causal ef-
fect of old data is zero, and then proposed distilling the
causal effect of old data by controlling the collider effect
of the causal graph. As ICM inferred, causal mechanisms
could be invariant across domains; hence, learning invari-
ant causal knowledge is likely to be superior in robust-
ness. To learn cross-domain knowledge, Yue et al.[3 dis-
entangled semantic attributes in images into causal
factors and used CycleGAN[203] to generate counterfactu-
al samples in the counterpart domain, then exploited the
counterfactual sample and a latent variable encoded by
variational auto encoder (VAE)R20Y as proxy variables of
an unobserved attribute for intervention. Apart from gen-
erating counterfactual samples, intervention can also be
implemented by the generative method. Mao et al.[’7 ar-
gued that conventional randomized control trials and in-
tervention approaches could hardly be used in naturally
collected images, then introduced a framework perform-
ing interventions on realistic images by steering generat-
ive models to generate intervened distribution. Lv et
al.97 introduced a causality inspired representation
learning (CIRL) algorithm that enforced the representa-
tions to satisfy three properties, and then used them to
simulate causal factors.
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5.3 Causal visual question answering

For visual question answering, the real causality be-
hind the visual-linguistic modalities and the interaction
between the appearance-motion and language knowledge
are neglected in most of the existing methods. In recent
works, the purpose of introducing causality into visual
question-answering tasks is to reduce language bias in
VQA tasks. Strong correlations between the question and
the answer will make VQA models rely on spurious cor-
relations without concerning visual knowledge. For ex-
ample, since the answer to the question “What is the col-
or of the apple?” is “red” in most cases, the VQA model
will easily learn the correlation between the word “apple”
and the word “red”. Thus, when given an image of a
green apple, the model still predicts the answer “red”
with strong confidence. Although simply balancing the
dataset28: 205 can partly mitigate the linguistic bias, the
spurious correlation still exists in the model. From this
perspective, the causality-based solution is better than
simply balancing the data, since the causal reasoning cuts
off the superficial correlations and makes the VQA mod-
els focus on the real causality.

Constructing a confounder set has been commonly
used in causal intervention practice. VC-RCNNI®8] con-
structed an object level visual confounder set for perform-
ing back-door adjustment in a visual task. Following VC-
RCNN, DeVLBert!!9 treated nouns in linguistic modal-
ity as confounders and constructed language confounder
sets using their average Bert representation vectors. Be-
sides, DeVLBert incorporated the intervention into
Bert's[181] pre-training process and combined mask model-
ing objective with causal intervention. As another imple-
mentation of the intervention, Yang et al.82] designed the
In-Sample attention and Cross-Sample attention module
to conduct front-door adjustment, where the In-Sample
attention module approximates probability P(W = w|x),
and the Cross-Sample attention module approximates
probability P(z). Using these attention modules, a cross
modality causal attention network was proposed for the
VQA task by combining causal attention with the previ-
ous LXMERTR06 framework. Counterfactual-based solu-
tions are also worth noting. Agarwal et al.[!9l proposed a
counterfactual sample synthesizing method based on gen-
erative adversarial network (GAN)[192. Overcoming the
complexity of the GAN based synthesising method, Chen
et al.l84 tried to replace critical objects and critical words
with mask tokens and reassigned an answer to the syn-
thesis of counterfactual QA pairs. Apart from sample syn-
thesizing methods, Niu et al.Bl developed a counterfactu-
al VQA framework that reduces multi-modality bias by
using the total indirect effect (TIE)BY for final inference.
By blocking the direct effect of one modality, the TIE
measures the total causal effect of the question and visu-
al information, thus reducing language bias in the VQA.
Li et al.194 proposed an invariant grounding for VideoQA
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(IGV) to force the VideoQA models to shield the answer-
ing process from the negative influence of spurious correl-
ations, which significantly improves the reasoning ability.
Liu et al.2% proposed a causality-aware event-level visu-
al question answering framework named cross-modal
causal relational reasoning (CMCIR) to discover true
causal structures via causal intervention on the integra-
tion of visual and linguistic modalities.

5.4 Comparisons and discussions

To summarize the development line and the current
state of causal visual representation learning, we show the
development situation of causal visual representation
learning in Fig.5, including the past, current, and future
directions. Although the above-mentioned causal visual
representation learning methods successfully apply causal
reasoning methods to uncover causal mechanisms and
achieve promising results, causal reasoning for visual rep-
resentation learning is still in its infancy stage with many
challenges. Firstly, the existing causal visual representa-
tion tasks are limited to several computer vision tasks
without being applied to more diverse and challenging
tasks such as video understanding, human-computer in-
teraction, urban computing, etc. It should be noticed that
recent large pre-trained vision-language models like con-
(CLIP)[207]
shown great potential in learning representations that are

trastive language-image pre-training have
transferable across a wide range of downstream tasks.
Different from traditional representation learning, which
is based mostly on discretized labels, popular prompt
learning adopts vision-language pre-training and aligns
images/videos/texts in a common feature space, which al-
lows zero-shot transfer to any downstream task via
prompting. Therefore, how to apply causality-ware know-
ledge to prompt learning may be a potential direction.
Secondly, causal reasoning has been burgeoned for many
visual learning tasks. So far, the existing evaluation data-
sets are still as traditional datasets for correlation learn-

ing without proper large-scale benchmarking datasets and
pipelines specified for causal reasoning. Thirdly, most of
the existing methods focus on causality discovery on
either visual or linguistic modality without considering
both of them. Therefore, a more in-depth analysis of the
relations between causal reasoning and visual representa-
tion learning is required.

6 Related causal datasets

Correlation-based models may perform well in exist-
ing datasets, not because these models have a strong reas-
oning capability, but because these datasets cannot fully
support the evaluation of the models’ reasoning capabil-
ity. Spurious correlations in these datasets can be ex-
ploited by the model to cheat, which means that the
model just concentrates on superficial correlation learn-
ing, not real causal reasoning, only approximating the dis-
tribution of the dataset. For example, in the VQA v1.0[182]
dataset for the VQA task, the model simply answers
-7 which
will achieve nearly 90% accuracy. Due to this shortcom-

“yes” when seeing the question “Do you see a -

ing in current datasets, researchers need to build bench-
marks that can evaluate the true causal reasoning capab-
ility of models. In this section, we take image question
answering benchmarks and video question answering
benchmarks as examples to analyze the current research
situation of related causal reasoning datasets and give
some future directions.

6.1 Image question answering

Image question answering benchmarks evaluate the
models’ capability to answering natural language ques-
tions based on a corresponding image. Recent image ques-
tion answering benchmarks try to collect or generate bal-
anced QA pairs to make the dataset distribution more
balanced in question distribution. VQA v2.0[28 collects
complementary QA pairs by replacing the image and the
answer in QA pairs. VQA-CP!9 resplited the VQA vl

Causality-aware
feature learning

Causality-aware
visual tasks

Causality-aware
visual tasks

Causality-aware
visual tasks

Causal theories

Visual question
answering

Domain adaptation

Visual-linguistic
reasoning

SCM

Semantic
segmentation

Adversarial
defense

Motion forecasting

Causal intervention

Future directions

| Generalize to more |
| diverse tasks
4

1
| Integrated with large
| pretrained model |

1
| More challenging ‘
| benchmark datasets

J

1
| In-depth analysis of
| causal reasoning |
J

Scene graph Zero/Few-shot Domain
counterfactual 5 . S
i —— generation learning generalization
Visual
Feature selection commonsense Visual grounding Visual recognition
reasoning
Before 2020 2020 2021 2022

Future

Fig. 5 Development timeline of causal visual representation learning including the past, current, and future directions
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dataset and VQA v2 dataset to construct two new data-
sets VQA-CP v1 and VQA-CP v2. As Fig.6 shows, Agar-
wal et al.l'9ll constructed IV-VQA and CV-VQA datasets
using semantic editing to generate images and reexamine
the image by a human. Li et al.2%8 proposed a human-
machine adversarial to collect robust QA pairs. Fig.7 il-
lustrates the adversarial data collection procedure. In
Table 2, we summarize these datasets in terms of image
source, split numbers, collected or not, and rebalanced or
not.

Q: How many zebras are there in the picture?
A:2 Zebra removed A: 1

Q: Is this a kitchen?
A: No Toilet removed; A: No

Q: What color is the balloon?
A: Red Umbrellas removed; A: Red

Q1: Are the kids about the same age?
Al: No, Conf: 58.5%

Q2: How many kids are there?
S\ A2: 3, Conf: 95.0%

Q3: Is the kid held by the man youngest?

Fig.7 The example QA pairs in AVQAI208]

Current image question answering uses various ap-
proaches to overcome the bias introduced by unbalanced
data. However, there is still a lack of large-scale bench-
mark datasets that support fair and transparent evalu-
ations of the causality behind the data and the reasoning
ability of the method. Introducing the causal concept and
causal methods like confounders and causal interventions
when building benchmark datasets may help resolve the
problem of the lack of specific causal reasoning bench-
mark datasets.
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6.2 Video question answering

The video question answering task is more complex
than the image question answering task due to the ubi-
quitous correlation between spatial and temporal informa-
tion, i.e., the introduction of complex temporal relations.
Thus, improving the spatial-temporal causal reasoning
ability of models can improve the performance on this
task, but simply approximating data distributions usu-
ally does not work. Thus, some recently released bench-
mark datasets are proposed to evaluate whether the mod-
el has the reasoning ability to understand the causal rela-
tion knowledge within the visual and linguistic content,
as shown in Table 3.

CLEVRER[R! contains synthesized videos and auto-
matically generated questions describing the collision of
geometric objects. A typical video and question types
from CLEVRER are shown in Fig.8. It is a balanced and
synthetic dataset that contains diagnostic annotations
and counterfactuals. VQuAD[R! is also a diagnostic syn-
thesized dataset. It is constructed from a balanced data-
set by separating objects into attributes like texture and
color, and balancing the data distribution based on these
attributes. A brief overview of the VQuAD objects is
shown in Fig.9. The VQuAD is a diagnostic dataset that
can be used to evaluate the extent of reasoning abilities
of various video QA methods. ComPhy[212 is a video QA
dataset that focuses on understanding object-centric and
relational physics properties hidden from visual appear-
ances. As shown in Fig.10, the ComPhy dataset studies
object’s intrinsic physical properties from object’s interac-
tions and how these properties affect their motions in fu-
ture and counterfactual scenes to answer the correspond-
ing questions. Action genome question answering
(AGQA)[21] includes numerous QA pairs, which are auto-
matically generated by the process. An overview of
AGQA is shown in Fig.11. The QA pairs in AGQA are
generated by parsing videos to scene graphs and using the
language composition inference by scene graph to gener-
ate QA pairs. SUTD-TrafficQA[2'4 is a traffic video ques-
tion answering dataset with six challenging reasoning
tasks, including basic understanding, event forecasting,
reverse reasoning, counterfactual inference, introspection,
and attribution analysis, to analyze the models’ reason-
ing ability. Fig.12 shows an example of a counterfactual
traffic video question answering process from SUTD-Traf-
ficQA. To be noticed, the counterfactual traffic video
question answering task in Fig. 12 requires the outcome of
a certain hypothesis that does not occur in the video. To
accurately reason about the imagined events under the
designated condition, the model is required to not only
conduct relational reasoning in a hierarchical way but
also fully explore the causal, logic, and spatial-temporal
structures of the visual and linguistic content. NExT-
QAR is a video question answering benchmark target-
ing the explanation of the content of the video, which re-
quires a deeper understanding of videos and reasoning
about causal and temporal actions from rich object inter-
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Table 2 Current causal image question answering datasets

Datasets Image source Split (train/val/test) Is collected? Rebalanced?
VQA vl COCO[209] 614K /—/— Yes No
VQA v2i28] COCORM 443K /214K /453K No Yes
VQA-CP v1[190] COCO[209] 245K /-/125K Yes No
VQA-CP v2[190] COCO[209] 438K /—/220K No Yes
IV-VQAI9] COCOI209] 257K /11.6K /108K No Yes
CV-VQA[I9] COCO[R209] 8.5K/0.4K/3.7K No Yes
AVQA[=208] Various 142.1K/8.7K/26.4K Yes Yes

Table 3 Video question answering (VideoQA) benchmarks related with reasoning. OC and OG denote open-ended question answering
as problem of classification and generation, respectively. MC stands for multi-choice QA.

Datasets Topic QA pairs QA task  Annotation Real world Diagnostic ~ Counterfactual Balanced
annotations
CLEVRER[219  Object collision 282K MC Auto v v
VQuADI21] Object movement 1.35M MC Auto v
ComPhy212] Hidden physical properties 100K OC&MC Auto v v
AGQAR1] Natural video scenes 192M OC&Comp Auto v
ositional
SUTD- Traffic events 62K MC&OC Human v v v
TrafficQAI[214]
NExT-QA[215]  Causal and temporal 52K MC&OG Human v v v
interactions
(a) First collision (b) Cyan cube enters (c) Second collision (d) Video ends

I. Descriptive

Q: What shape is the object that collides with the cyan cylinder?
A: Cylinder

Q: How many metal objects are moving when the video ends?
A:3

I1. Explanatory

Q: Which of the following is responsible for the gray cylinder-s
colliding with the cube?

a) The presence of the sphere

b) The collision between the gray cylinder and the cyan cylinder
A:b)

Fig.8 A sample in CLEVRER, including four question types:

actions in daily activities. As shown in Fig. 13, the NExT-
QA dataset contains rich object interactions and requires
causal and temporal action reasoning in realistic videos.
The NExT-QA dataset challenges QA models to reason
about causal and temporal actions and understands rich
object interactions in daily activities.

7 Extensive applications

Causal reasoning with visual representation learning

--

II1. Predictive

Q: Which event will happen next?

a) The cube collides with the red object

b) The cyan cylinder collides with the red object
A:a)

IV. Counterfactual

Q: Without the gray object, which event will not happen?
a) The cyan cylinder collides with the sphere

b) The red object and the sphere collide

A:a),b)

descriptive, explanatory, predictive, and counterfactuall210]

has a variety of applications. Modeling causal reasoning
for a variety of tasks can achieve a better perception of
the real world. In this section, we introduce the applica-
tions from five aspects: image/video analysis, explainable
artificial intelligence, recommendation system, human-
computer dialog and interaction, and crowd intelligence
analysis. We also discuss how causal reasoning benefits
various real-world applications, as shown in Fig. 14.

In image/video analysis, most of the existing work re-
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How many things can hit the big
jumping squared shiny sphere? 1

| What is the rate of movement of I
| large bubbled metallic cylinder? |
| Fast | movement rate? 2

I le thsetflel ?:g t:rllgg gl:t :E;Llj}’ttYhe es hit the large squared metal ball; what is its |
| b —and_gray & | Lshape? Sphere I
_____I r __________________________ |

What number of big shiny
spheres are there with slow
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. Fast rotating cube
-,
Slow jumping sphere I Hop-2

. . I Hop-3
Fast jumping cylinder I Hop-4

° Slow moving sphere

[
| | There is a large shiny thing that is expected to |

| | There is a thing that is in front of the striped
I | shiny block; what is its rate of movement? Fast
I

Fig.9 Illustration of an instance of VQuUAD dataset(2!l], which shows various questions that are generated concerning the video
created and the difference in complexity in terms of hops for the questions

Reference video 1

Reference video 2

pTime

Reference video 3

Reference video 4

pTime

Target video

L. Factual
QI1: Is the cyan cube heavier than the rubber cylinder? A: No.
Q2: Are there any blue cylinders that enter the scene? A: Yes.

> Time [, Counterfactual

Q3: If the rubber cylinder were lighter, which of the
following would happen?
a) The cube would collide with the rubber cylinder V
b) The rubber cylinder and the sphere would collide V
¢) The metal object would collide with the sphere x

p Time

I11. Predictive

Q4: What will happen next?
a) The rubber cylinder and the metal object collide \
b) The rubber cylinder and the sphere collide x
c) The cube collides with the sphere x

p Time

Fig. 10 Sample reference videos, target video, and question-answer pairs from ComPhy dataset/212]

Spatio-temporal Holding  Leftof Hold Twist Behind  Hold Leftof Hold
scene graph: [Plione | P ) ' Bottle | [ 5] i
Picking up phone Taking épimum Putting a phone down Holding a bottle

Example compositional spatio-temporal questions:

Q: What did the person hold after putting a phone somewhere? A: Bottle

A: Holding a bottle
Q: Did they take a picture before or after they did the longest action? A: Before

Q: Were they taking a picture or holding a bottle for longer?

Generalization to novel compositions:

Q: Did the person twist the bottle after taking a picture? A: Yes
Generalization to indirect references:

Q: Did the person twist the bottle? A: Yes
Q: Did the person twist the object they were holding last? A: Yes
Generalization to more compositional steps:

Q: What did they touch last before holding the bottle and after A: Phone

taking a picture, a phone or a bottle ?

Legend: 1 Objects Relationships Actions B Time

Fig. 11  An overview of AGQA dataset[213]

lies on learning data correlations rather than causal struc-
tures, and the superficial correlation within the image and
video data makes the model vulnerable to visual changes
in the dataset. Therefore, a causality-ware feature learn-
ing strategy is required to make the model learn essential

@ Springer

Time
Q: Would the accidentstill happenif the persondid not ridethe motorbike
across the crossing?
A: Yes, the road is not

d and the sid llision h d at the cr

B PP

Intervention Counterfactual

[}

|

_____ AN

——————————— “ Relation Object :
= — (@)
@ G

a

Fig. 12 An example of counterfactual question-answer pair in
SUTD-TrafficQA dataset(214]

causal structures behind the data and robust to different
data distributions. One of the main methods of dealing
with superficial data correlations is using the causal inter-
vention. Assume that commonsense knowledge exists in
visual features, but commonsense might be confused by
false observation bias. For example, the words “cup”, “ta-
ble”, and “stool” have high co-occurrence frequencies be-
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Q: Why did the boy jump onto the
green disc at the start?

0. To break it.

1. Slide down slope.

2. Wide hole on the ground.

3. To keep afloat

4. For art

going down?
0. Look at him

2. Running point

4. Fall down

Q: How does the boy in black react
while the boy on the green disc

1. Imitate the movement

3. Stabilise himself

Q: Why did the black jacket boy
run after seeing the boy slide down?
0. Retrieve the ball.

1. Running after ball.

2. Want to try slide.

3. Check nobody behind.

4. Let the dog chase.

Fig. 13 Examples of multi-choice QA in NExT-QA dataset[215)

—

Image/video analysis

/ Future directions \

More reasonable causal

—

Explainable artificial intelligence

relation modeling

More precise approximation of

—

Applications Recommendation system

intervention distributions

—>| Human-computer dialog and interaction |

synthesizing process

Large-scale benchmarks and

Crowd intelligence analysis

e

evaluation pipeline
| N v

|
|
|
|
|
|
|
| More proper counterfactual
|
|
|
|
\

Fig. 14 Extensive applications and future directions

cause they commonly appear in daily life, but the com-
monsense knowledge usually wrongly predicts the class as
table due to the observation bias. To reduce the observa-
tion bias, the causality-ware visual commonsense model is
required, which regards the object category as a con-
founding factor and directly maximizes the likelihood
after the intervention to learn the visual feature repres-
entation. By eliminating observation bias, the learned
visual features are robust to image and video analysis
tasks. A representative task is weakly supervised object
localization, detection, and grounding216-218] which aims
to localize objects described in the sentence to visual re-
gions in the image/video. Despite recent progress, exist-
ing methods may suffer from the severe problem of spuri-
ous association such as: 1) the association is not object-
relevant but extremely ambiguous due to weak supervi-
sion, and 2) the association is unavoidably confounded by
the observational bias when using statistics-based meth-
ods. Therefore, a unified causal framework is required to
learn the deconfounded object-relevant association for ac-
curate and robust video object localization, detection and
grounding.

With the development of deep learning across indus-
tries and disciplines, the applications of deep learning
models in real-world scenes require a high degree of ro-
bustness, interpretability, and transparency. Unfortu-
nately, the black-box properties of deep neural networks
are still not fully explainable, and many machine de-
cisions are still poorly understood?!9. In recent years,

causal interpretability has received increasing attention.
These works220-226] have made progress in explainable ar-
tificial intelligence based on causal interpretability. For
example, in the current COVID-19 pandemic, causal me-
diation analysis helps disentangle different effects contrib-
uting to case fatality rates when an example of Simpson's
paradox was observed?27l. Learning the best treatment
rules for each patient is one of the promising goals of ap-
plying explainable treatment effect estimation methods in
the medical field. Since the effects of different available
drugs can be estimated and explainable, doctors can pre-
scribe better drugs accordingly.

At present, some causal reasoning works[228-235 have
been applied to the recommendation system. The recom-
mendation system is actually a problem of causal reason-
ing228], User embedding represents what type of person
the user is and infers the user’s preferences based on the
user’s attributes. The causal effect of a recommendation
system is whether the user is satisfied with the recom-
mendation. Superficial bias exists because the recom-
mendation system is trained on biased samples (both
users and items). An example is a personalized recom-
mendation, where we wish to build a model of a custom-
er's shopping interest through various data sources, such
as Web Browser records and shopping history. However,
if we train a recommendation system on customers’ re-
cords in controlled settings, the system may provide little
additional insight compared to the customers’ mental
states and emotions, thus may fail when deployed. While
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it may be useful to automate certain decisions, under-
standing causality may be necessary to recommend com-
modities that are personalized and reliable. A general ap-
proach to removing survival bias is to construct counter-
factual mirror users, construct similarity measures using
unbiased information, and construct matches from low-
active to high-active users. In this way, we can alleviate
the user's dissatisfaction with the previously recommen-
ded content and the low user activity.

For human-computer dialog and interaction, some
emerging tasks contain the interaction between vision and
language. Additionally, there exist multi-modal spatial-
temporal information and complex relations captured by
various devices. Most of the existing work relies on data
correlation rather than causal relevant evidence, and the
false correlation in the data makes the model vulnerable
to language biases in the problems. Take a VQA task as
an example, where we aim to remove visual objects that
are unrelated to answering the question, and the predic-
tion of the model is not expected to change. This can pre-
vent the model from relying on superficial data correla-
tions. When changing objects that are related to a ques-
tion, the model is expected to change the answer accord-
ingly. Adjusting question-related objects encourages the
model to predict based on causality-aware objects. For a
better user experience, the human-computer dialog and
interaction system is required to understand people'’s pur-
poses and make reliable decisions. Causal reasoning is be-
neficial to the pursuit of reliable human-computer inter-
action by uncovering and modeling heterogeneous spatial-
temporal information in a reliable and explainable way.
Especially for robot interactionl: 233-235] where the relev-
ant environmental features are not known in advance,
prior knowledge can be utilized as a good candidate for
causal structures. The strong relation between causal
reasoning and its ability to intervene in the world sug-
gests that causal reasoning can greatly address this chal-
lenge for robotics, which benefits the application of robot-
ics significantly.

The applications mentioned above usually focus on a
single subject, whereas crowd intelligence analysis(230]
aims to address related sensing and cognitive tasks for
multiple subjects and their interaction. In recent years,
we have been witnessing the explosive growth of multi-
modal heterogeneous spatial/temporal/spatial-temporal
data from different kinds of data sensors. Urban comput-
ing(?37 is an example of crowd intelligence analysis, which
aims to tackle traffic congestion, energy consumption,
and pollution by using the data that has been generated
by a large number of traffic vehicles in cities (e.g., traffic
flow, human mobility, and geographical data). For ex-
ample, huge amounts of heterogeneous traffic data come
from various sources, including both static and dynamic
data, such as traffic road networks, geographic informa-
tion system (GIS) data, traffic flow, traffic mobility,
traffic energy consumption, etc. Moreover, the heterogen-
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eous spatial-temporal traffic data contains a large num-
ber of useful traffic rules with strong causal relations.
Therefore, how to utilize different heterogeneous spatial-
temporal data and discover their complex and entangled
causal relations is beneficial to urban computing and
crowd intelligence analysis.

8 More detailed discussions

Some researchers have successfully implemented caus-
al reasoning for visual representation learning to discover
causality and visual relations. However, causal reasoning
for visual representation learning is still in its infancy
stage, and many issues remain unsolved. Therefore, this
section highlights several possible research directions and
open problems to inspire further extensive and in-depth
research on this topic. Potential research directions for
causal visual representation learning can be summarized
as: 1) more reasonable causal relation modeling; 2) more
precise approximation of intervention distributions;
3) more proper counterfactual synthesizing process;
4) large-scale benchmarks and evaluation pipeline.

8.1 More reasonable causal relation mod-
eling

Reasonable causality modeling is the basis for causal
inference. Real-world data like visual information is usu-
ally unstructured, and the effect of causal relation may be
unobserved. For example, momentum is likely to be detri-
mental under long-tailed distribution datals?l, and there is
no consensus on how to properly model causality on
many tasks because the real causality may be more com-
plicated than expected. For the VQA task, Yang et al.[82]
treated visual and language features as one vertex in the
causal graph, and Niu et al.Bl consider the visual and lin-
guistic features separately. However, these methods focus
on causality discovery on either visual or linguistic mod-
ality without considering both of them. Therefore, future
work should consider: 1) in-depth analysis of the rela-
tions between causal reasoning and visual representation
learning; 2) model comprehensive and reasonable causal
relation.

8.2 More precise approximation of inter-
vention distributions

A precise estimation of the intervention distribution
helps the implementation of a certain causal model. Most
of the current intervention distribution approximation
methods focus on identifying all confounders for a cer-
tain task, while these confounders are usually defined as
the average of object features in visual tasks[61, 68, 193] Ac-
tually, the average features may not properly describe a
certain confounder, especially for complex heterogeneous
visual data. Thus, how to approximate the confounders
more accurately is a key future work that needs to be fur-
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ther considered for causal intervention methods.

8.3 More proper counterfactual synthes-
ising process

Counterfactual inference-based methods usually focus
on refining the training procedure, i.e., embedding the
counterfactual inference process into the training proced-
ure. Counterfactual synthesizing methods[02 77 84, 191] have
proved their effectiveness in many tasks. Embedding
counterfactual inference into models can effectively elim-
inate data bias within the data. A novel counterfactual
frameworkB!l gives wus insight into this potential.
However, visual data is often entangled and heterogen-
eous, which makes the data bias hard to understand and
model. Therefore, how to model a proper counterfactual
synthesizing process is a potential direction of data debi-
asing in visual representation.

8.4 Large-scale benchmarks and evalu-
ation pipeline

Although causal reasoning has been burgeoned for
many visual learning tasks, most of the existing evalu-
ation datasets are still traditional datasets for correlation
learning without proper large-scale benchmarking data-
sets and pipelines to support fair and transparent evalu-
ations of emerging research contributions. The only exist-
ing causal datasets discussed in the above sections have
limited scale and lack comprehensive evaluation stand-
ards for causal reasoning. Therefore, more large-scale
benchmark datasets and pipelines for specific visual rep-
resentation learning tasks should be considered in future
research.

Generally, causal visual representation learning is still
an emerging and challenging research topic. Causal mod-
eling, intervened distribution approximation, counterfac-
tual inference, large-scale benchmarks, and evaluation
pipelines have great potential for further exploration.

9 Conclusions

This paper has provided a comprehensive survey on
causal reasoning for visual representation learning. In this
paper, we focus on the prospective survey of related
works, datasets, insights, future challenges and opportun-
ities for causal reasoning, visual representation learning,
and their integration. We mathematically present the ba-
sic concepts of causality, the SCM, the ICM principle,
causal inference, and causal intervention. Then, based on
the analysis, we further give some directions for conduct-
ing causal reasoning on visual representation learning
tasks. We also review some recent popular visual learn-
ing tasks, including visual understanding, action detec-
tion and recognition, and visual question answering, in-
cluding the discussions about the existing challenges of
these visual learning methods. In addition, the related

causality-based visual representation learning works and
datasets are also discussed systematically. Finally, extens-
ive applications and some potential future research direc-
tions are provided for further exploration. We hope that
this survey can help attract attention, encourage discus-
sions, and bring to the forefront the urgency of develop-
ing novel causal reasoning methods, publicly available
benchmarks, and consensus-building standards for reli-
able visual representation learning and related real-world
applications more efficiently.
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