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(a) Clean images
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(b) Adversarial images(Acls)
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Fig. 1: Precision-Recall (PR) curves of non-robust detector (standard SSD), and
two SSD-based robust detectors, i.e., MTD [34] and our RobustDet. They are
respectively evaluated under the conventional standard setting with clean images
and two detector attacks whose adversarial images are generated from attacks of
classification (Acls) and localization (Aloc) [34]. It is observed that SSD has a high
performance on clean images but performs rather poorly under two attacks. The
robust detector MTD is relatively robust under attacks but presents a significant
performance drop on clean images. Instead, our RobustDet not only gains a
reliable detection robustness on adversarial images, but also maintains a high
detection performance on clean images on par with the standard SSD.

Abstract. Object detection, as a fundamental computer vision task,
has achieved a remarkable progress with the emergence of deep neural
networks. Nevertheless, few works explore the adversarial robustness of
object detectors to resist adversarial attacks for practical applications in
various real-world scenarios. Detectors have been greatly challenged by
unnoticeable perturbation, with sharp performance drop on clean images
and extremely poor performance on adversarial images. In this work,
we empirically explore the model training for adversarial robustness in
object detection, which greatly attributes to the conflict between learning
clean images and adversarial images. To mitigate this issue, we propose a
Robust Detector (RobustDet) based on adversarially-aware convolution
to disentangle gradients for model learning on clean and adversarial
images. RobustDet also employs the Adversarial Image Discriminator
(AID) and Consistent Features with Reconstruction (CFR) to ensure a
reliable robustness. Extensive experiments on PASCAL VOC and MS-
COCO demonstrate that our model effectively disentangles gradients
and significantly enhances the detection robustness with maintaining the
detection ability on clean images. Our source code and trained models
are publicly available at: https://github.com/7eu7d7/RobustDet
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Fig. 2: Detection performance comparison on clean and adversarial images for
standard SSD, MTD [34], CWAT [5] and our RobustDet.

1 Introduction

Although deep neural networks (DNNs) have achieved a remarkable progress in
many visual tasks such as image classification [12], object detection [9,23] and
semantic segmentation [37,4], they are vulnerable to even slight, imperceptible
adversarial perturbations and yield erroneous predictions [10,21,31,3]. A miss
is as good as a mile. Such vulnerability inspires increasing attentions on the
adversarial robustness mainly in the image classification task [29,3,16,36,22].
Nevertheless, with elaborate architectures to recognize simultaneously where
and which category objects are in images, object detectors also suffers from the
vulnerable robustness and are easily fooled by adversarial attacks [32,30,6,5,15].
As demonstrated in Fig. 2, standard SSD achieves only 1.8% mAP on adversarial
images, by 75.7% mAP drops! The vulnerability of object detection models
seriously raises security concerns on their practicability in security-sensitive
applications, e.g., autonomous driving and video surveillance.

The vulnerable robustness of object detectors has been impressively verified
to attack two tasks of classification and localization [32,30,24,6], few researches
focus on investigating the challenging countermeasure: how to defend those
attacks to resist the adversarial perturbations for detectors. To address this issue,
MTD [34], as an earlier attempt, regards the adversarial training of object
detection as a multi-task learning and choose those adversarial images that
have the largest impact on the total loss for learning. Subsequently, the second
related work, CWAT [5], points out the problem of class imbalance in the attack
and proposes to attack each category as evenly as possible to generate more
reasonable adversarial images. In general, these existing methods suffer from the
detection robustness bottleneck: a significant degradation on clean images
with only a limited adversarial robustness, shown in Fig. 1 and 2. That is, due
to the introduction of adversarial perturbation during training, they reach a
compromise for both the model accuracy on clean images and the robustness on
adversarial images. This would inevitably make a concession of robust models
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Fig. 3: Empirical analyses on the conflict between the learning of clean images
and adversarial images via the statistics of loss changes1. (a), (b) and (c) are the
loss changes on robust detector MTD [34]. (d), (e) and (f) are the loss changes
on our RobustDet. For both methods under clean → clean, they have the
decreasing loss changes for most images, indicating the favorable training. Under
clean(adv) → adv(clean), MTD has the increasing loss changes for most images,
indicating the inverse training effects between learning clean and adversarial
images. Instead, our RobustDet has almost no effects between them, indicating a
better disentanglement for learning clean and adversarial images.

with the performance sacrifice on clean images as well as a limited adversarial
robustness for object detection.

In this paper, we firstly explore the aforementioned detection robustness
bottleneck on both clean images and adversarial images for object detection.
Particularly, one noteworthy difference from the adversarial robustness in the
image classification task, where robust models usually only have a small amount
of the performance decline on clean images [35,11], is that robust object detectors
only yields a limited robustness from adversarial training and suffer from a
significant performance degradation by nearly 30% on clean images (77.5% mAP
for standard SSD vs. 48.0% mAP for MTD [34] on the PASCAL VOC dataset, as
shown in Fig. 2). It indicates that, in the training phase, robust detectors hardly
reach a win-win balance to trade off the robustness of adversarial images and the
accuracy of clean images. To further investigate this issue, on one hand, we inspect
the individual loss changes for both images in an adversarial robust detector. A
conflict between two tasks of learning clean images and adversarial images in
adversarial training is observed, which can be speculated as a pitfall to explain
the aforementioned detection robustness bottleneck to a certain extent. On the
other hand, we analyze the interference between the gradients of clean images
and the adversarial images for existing models. Accordingly, strong interference is
observed, indicating that an object detector has a large difficulty to distinguish
no-robust and robust features. Thus, it is reasonable that models are confronted
with the detection robustness bottleneck.

To mitigate this problem, we propose a Robust Detection model (RobustDet)
via adversarially-aware convolution. The model learns different groups of convo-
lution kernels and adaptively assigns weights to them based on the Adversarial

1 More details can be referred to our supplementary material.
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Image Discriminator (AID). RobustDet also employs the Consistent Features with
Reconstruction (CFR) to ensure reliable robustness. By applying reconstruction
constraints to make the features extracted by the model can be reconstructed
as clean images as possible, the model is drived to extract more robust features
for both clean and adversarial images. Extensive experimental results on PAS-
CAL VOC [8] and MS-COCO [18] datasets have demonstrated superior accuracy
performance on clean images and promising detection robustness on adversarial
images.

Overall, our contributions are summarized as follows:

1. Empirically, we analyse the detection robustness bottleneck and verify the
conflict between learning clean images and adversarial images for robust
object detectors.

2. Technically, we propose a robust detection model (RobustDet) based on
adversarially-aware convolution to learn robust features for clean images
and adversarial images. In addition, we propose Consistent Features with
Reconstruction (CFR) to constrain the model to extract more robust features
that can be reconstructed as clean images as possible.

3. Experimentally, we conduct comprehensive experiments to evaluate the pro-
posed approach for adversarial detection robustness on PASCAL VOC and
MS-COCO datasets, achieving state-of-the-art performance on both clean
images and adversarial images. It presents a superior accuracy performance
on clean images and a promising detection robustness on adversarial images.

2 Related Work

2.1 Adversarial Attack and Defense

For deep neural networks, their excellent feature representation capability has
been demonstrated in various scenarios [12,26,13]. Even so, it has been criticized
that neural network models easily produce totally wrong predictions under slight
perturbations to inputs [28]. Especially, they are rather vulnerable to adversar-
ial attacks. Accordingly, more and more adversarial attack methods have been
proposed: gradient-based white box adversarial attack methods (e.g., FGSM [10]
and PGD [21]), and black box adversarial attack methods (e.g., UPSET [24] and
LeBA [33]). These methods can easily fool the classification model and even a
change in just one pixel would totally fool the model [27]. To address this problem,
some defense methods have been proposed [29,3,16,36,22]. Among them, adversar-
ial training is one of the most widely used and effective methods. It allows the
model to continuously learn the adversarial images and focuses more on the robust
features of adversarial images and clean images to ignore non-robust features.

2.2 Attack and Robust Object Detector

In recent years, seminal object detection models have been proposed, e.g., Faster
RCNN [23], SSD [19], YOLOX [9], and DETR [2], building a series of profound
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and insightful milestones for object detection. Even so, they inevitably inherit the
vulnerability to attack, with the root in deep neural networks. Existing researches
have shown that attack methods for classification tasks can also be effective
in attacking object detection models [34]. Object detectors have some different
structures from classification models, and object detectors can be attacked more
effectively for these structures. For example, DAG [32] and UEA [30] are the
attack methods for object-level features by superimposing perturbation on the
whole image. Dpatch [20] fools the detector by adding a patch to the image.
ShapeShifter [6] attacks detectors in the physical world.

Instead, although attack methods for object detectors are becoming more
and more efficient, there are few defense strategies in the object detection task.
[34] proposes the MTD method based on adversarial training. At each step of
adversarial training, the images that can increase the loss the most are selected
from the adversarial images to learn to improve the robustness of the model. [5]
explores the problem of class imbalance in the attacks for object detectors and
proposes to make the attack intensity as consistent as possible for each class.
Adversarial training is performed through these images to improve the robustness
of the model. These methods mainly focus on the generation of adversarial images
and ignore the lack of robustness caused by the structure of the model. Thus,
they suffer from the detection robustness bottleneck as mentioned in Sec. 1.

Since few research works on adversarially-robust object detectors, it is almost
blind to essentially explore object detection. In this paper, we will firstly explore
empirically the detection robustness bottleneck to further understand the ad-
versarial robustness in object detection in Sec. 3. Then, we will elaborate the
proposed RobustDet to address the detection robustness bottleneck in Sec. 4.
We will conduct extensive experiments to demonstrate the effectiveness of the
proposed method In Sec. 5 and conclude the paper in Sec. 6.

Defenses against unseen attacks are customarily explored in classification
tasks. However, for detection tasks we suffer from a lack of the most fundamen-
tal conception of their robustness. Thus, we focus more on more fundamental
problems of the robustness of object detectors. Those more advanced problems
need to be explored further based on this work.

3 Adversarial Robustness in Object Detection

3.1 Problem Setting

For a clean image x, an object detector f parameterized by θ, yields object
bounding boxes {b̂i = [pxi , p

y
i , wi, hi]} with their predicted class probabilities {ĉi =

[ĉbgi , ĉ1i , · · · , ĉCi ]} over the background (bg) and C object categories, i.e., f(x;θ) →
{b̂i, ĉi}, where pxi and pyi are the coordinates of the top left corner of b̂i, wi and hi

are the width and height of b̂i. The localization loss Lloc =
∑

i∈pos L
smooth
1 (b̂i, bi)

and the classification loss Lcls = −
∑

i∈pos ci log (ĉ
u
i )−

∑
i∈neg ci log(ĉ

bg
i ), where

bi is the Ground-Truth (GT) bounding box that matches the predicted bounding

box b̂i and ci denotes its GT category, and the detection loss is Ldet = Lloc+Lcls.
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Following MTD [34], two types of attacks (Acls and Aloc) for object detection
are specifically steered for classification and localization, respectively:

  \begin {aligned} A_{cls}(x) &= \mathop {\arg \max }\limits _{\bar x \in {{\mathcal S}_x}} {\mathcal L}_{cls}(f(\bar x; \bm \theta ),\{ {\bm c_i, \bm b_i}\} ), \\ A_{loc}(x) &= \mathop {\arg \max }\limits _{\bar x \in {{\mathcal S}_x}} {\mathcal L}_{loc}(f(\bar x; \bm \theta ),\{ {\bm c_i, \bm b_i}\} ), \end {aligned}  


 

 


 
(1)

where x̄ is the adversarial counterpart of x, and Sx =
{
x̄ ∩ [0, 255]cwh

∣∣∥x̄− x∥∞ ≤ ϵ
}

is the adversarial image space centered on clean images x with perturbation
budget of ϵ. Acls denotes searching for the image x in its ϵ neighborhood that
maximizes Lcls as the adversarial image.

3.2 Analyses of the Detection Robustness Bottleneck

(1) Conflict between Learning Adversarial images and Clean images.
To defense the attacks, robust models are expected to be immune to adversarial
perturbations via learning shared features between clean images and adversarial
images to improve the robustness of the model. This is the conventional wisdom
in prevalent adversarial training for defense, especially in the image classification
task. Nevertheless, the adversarial robustness for object detection is worrisome.
Namely, robust detection models perform poorly on both clean and adversarial
images, as demonstrated in Fig. 1 and Fig. 2. In particular, adversarial training
on both clean and adversarial images results in a significant performance drop
on clean images. This may indicate a conflict between the tasks of learning clean
and adversarial images; thus the model has to compromise a trade-off between
adversarial and clean images. To further explore the reasons why the model
cannot learn both images well, we conduct an investigation from two aspects.

Loss changes for clean and adversarial images. We inspect intuitively
the loss changes for clean and adversarial images. Specifically, we perform a
validation via m-step adversarial training of an adversarially-trained robust model
on a batch of clean images or adversarial images and observe the loss change on
another batch of images (The selection of m and algorithm details are discussed in
the supplementary material). The loss change of the adversarial (clean) image after
learning the clean (adversarial) image is defined as clean → adv (adv → clean).
From the experimental results in Fig. 3, it is observed that clean → adv and
adv → clean are positive for most images compared with the most negative results
of clean → clean. This shows that learning clean images and adversarial images
will increase the loss of each other for most images. The impact of adversarial
images on clean images is greater than that of clean images on adversarial images.
This validation shows that learning clean images and adversarial images are
conflicting tasks for the model, to some extent. Thus, during the training phase,
the model has the burden to well address this learning conflict.

Gradient interference analysis. The clean image and the adversarial
image are from two different domains with different patterns. There are shared
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Fig. 4: The gradient entanglement degree Rclean
adv of clean images and adversarial

images based on features from different convolutional layers. The upper shows
the results from SSD and the second row is from our RobustDet.

features between them but also have their specific features. A highly robust model
must have parameters for extracting the shared features and another two part
parameters for extracting specific features that are orthogonal to each other. For
an adversarially-trained robust model, the shared features of two kinds of images
should have been well learned, and only the part processing specific features still
needs reinforcement. Therefore, for this model, the gradients generated by the
two kinds of images should have low correlation and be nearly orthogonal.

Accordingly, we define the intensity of gradient entanglement of one image x1

to another image x2: Rg1
g2 = g1

T g2/|g2|2, where g1 and g2 are the gradient vectors
of the two images. For two clean and adversarial images, the greater their gradient
entanglement of these two kinds of images, the more serious the interference
between them; and the model does not distinguish the specific features well. Based
on the experimental results of the above loss variations, the greater the gradient
entanglement, the more difficult the conflict between the two kinds of images
can be reconciled. The smaller gradient entanglement indicates that the model
has enough ability to distinguish the shared features from their specific features
and can disentangle the clean images and the adversarial images. It can be seen
from the Fig. 4 that the gradient entanglement between the clean image and
the adversarial image on the adversarial trained robust model is quite high, and
even negative values appear in the first few layers. This shows that the updated
directions of some clean images and adversarial images on the adversarial-trained
model are completely opposite, which also indicates the conflict between the two
kinds of images. When learning one kind of image, it will inevitably have an impact
on another kind of image, which leads to a detection robustness bottleneck.

(2) The Conflict to the Robustness of Classification and Location.

We compare the detection results of the non-robust model and the adversarial
trained robust model on the clean image, the Acls adversarial image, and the
Aloc adversarial image. It can be seen from the Fig. 5 that the non-robust model
will locate the wrong object with high confidence when applying an attack. The
robust model will not completely confuse to the attack, but its classification
and localization accuracy on both clean images and adversarial images have
greatly decreased. The robustness of localization objects is much better than
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Fig. 5: Left: The detection results of the standard SSD, MTD and our RobustDet
on the clean image and two adversarial images attacked from classification (Acls)
and localization (Aloc). MTD and RobustDet are robust models taking SSD as
their base-models. Right: Under the attacks of Acls and Aloc, the corresponding
loss changes between the adversarial image and the original image.

classification. It can be seen from the figure that the bounding boxes predicted
by the robust models do not have as large deviations as the classification.

The results in Fig. 5 shows that the variation of Lcls when applying Acls attack
compared to the variation of Lloc when applying Aloc attack is much larger. This
also indicates that the classification module is less robust and more vulnerable
to attack. These both shows that the conflict between the two images under the
classification subtask is more serious than the localization subtask. The scores
given in the classification part will also determine the selection of the bounding
box. Therefore, this conflict will further damage the performance of the model.

4 Methodology

4.1 Overall Framework

Based on the aforementioned analyses in Sec. 3.2, the conflict between the
learning of clean and adversarial images has adversary effects on the robustness of
classification and localization. To address this problem, we propose a RobustDet
model for defenses against adversarial attacks (Fig. 6). We detect objects through
adversarially-aware convolution and use an Adversarial Image Discriminator
(AID) to generate the weights for the adversarially-aware convolution kernel based
on the perturbations of the input image. Furthermore, inspired by VAE [14], the
image reconstruction constraint via CFR is considered for reconstructing images
as clean images to facilitate the model to learn robust features.

4.2 Adversarially-Aware Convolution (AAconv)

Existing models essentially utilize the shared model parameters for learning
adversarial images and clean images. This inevitably makes the model suffer
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Fig. 6: The overall architecture of RobustDet based on SSD. The CFR is inserted
into the SSD backbone followed by the first detection layer (conv4 3), and the
two parts in front and behind this layer are named F1 and F2. The blue arrows
are the data flow of AID, whose outputs are used as weights of AAconv. The
purple arrows are the primary data flow when RobustDet detect objects. The
teal arrows are the reconstruction data flow during training.

from a detection robustness bottleneck. There are objective distinctions between
adversarial images and clean images. Admitting these distinctions rather than
forcing the detector to learn these two images with the same parameters would
be a better choice. Making the model explicitly distinguish these two kinds
of images and detect them with different parameters will alleviate the conflict
between these tasks. Inspired by [7], we propose adversarially-aware convolution
in our RobustDet model to learn robust features for clean images and adversarial
images.

RobustDet employs different kernels to convolve clean images and adversarial
images. Different parameters will be used for different perturbed images. The
generation of the convolution kernel is controlled by an adversarial image dis-
criminator D. Before the model detects objects in an image, the adversarial
image discriminator D will first generate the M -dimensional probability vector
of the image P = D(x) = {π1, π2, ..., πM}. This probability vector is used as the
weights to control the convolution kernels generation. Then the parameters of the
finally generated convolution kernel can be write as: θ̇AAconv =

∑M
i=1 θ

AAconv
i ·πi,

where θAAconv
i denotes parameters of dynamic convolution kernels in our AAconv

module, where i indicates the index of i-th convolution kernel.
RobustDet uses adversarially-aware convolutions to adaptively detect different

images with different kernels and thus it can effectively learn robust features
for clean and adversarial images. It not only extracts the shared features, but
also can be responsible for specific features for clean and adversarial images.
Therefore, it is more effective to alleviate the detection robustness bottleneck.

4.3 Adversarial Image Discriminator (AID)

The generation of the adversarially-aware convolution kernels is controlled by
the adversarial image discriminator. And this module may also be attacked and
give the wrong weight. Wrong weights will lead the wrong convolution kernel
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to be generated, which will be a disaster for the model. Accordingly, in order
to improve its robustness, we employ Online Triplet Loss [25] to the adversarial
image discriminator. Specifically, we consider the probability distribution of the
same kind of images (i.e., clean or adversarial images) as close as possible and the
different kinds of images (clean or adversarial images) as far away as possible. A
margin between the probability distributions of the two kinds of images outputs
is introduced to strengthen the robustness of the adversarial image discriminator.
Jensen-Shannon (JS) divergence [17] is utilized to measure the distance between
two probability distributions, P1 and P2 (two distributions as an example for JS
divergence): JS (P1∥P2) = 1

2KL
(
P1∥P1+P2

2

)
+ 1

2KL
(
P2∥P1+P2

2

)
. Overall, the

AID loss is defined as follows,

  \begin {aligned} \mathcal {L}_{aid}=\textstyle \sum _{i=1}^{N_T}\left [JS\left (D\left (x_{i}^{a}\right ) \| D\left (x_{i}^{p}\right )\right )- \right . \left . JS\left (D\left (x_{i}^{a}\right ) \| D\left (x_{i}^{n}\right )\right )+\gamma \right ]_{+}, \end {aligned} 


  
  

   
  

     (2)

where xp (xn) is a randomly selected image from one minibatch that has the
same (opposite) type (i.e., clean or adversarial image) as the anchor instance xa

in one triplet, γ is the margin between xn and xp, NT is the number of triplets,
and [·]+ clips values to [0,+∞].

4.4 Consistent Features with Reconstruction (CFR)

To alleviate the negative effects of adversarial perturbation, our RobustDet aims
to ensure the feature distribution of an adversarial image in the neighbourhood
of its clean image. Thus, inspired by VAE [14], our RobustDet reconstructs
consistent features of clean/adversarial images with clean images via our AAconvs.
Assume that the output feature map of the convolutional layer after the conv4 3
layer (VGG backbone) comes from a multivariate Gaussian distribution with
an diagonal covariance matrix N (µ = (µ1, ..., µN ),Σ = diag(σ2

1 , ..., σ
2
N )). For

simplicity, σ = (σ2
1 , ..., σ

2
N ). Instead of directly predicting the features that are

ultimately used for detection, our model predicts the mean µ and standard
deviations σ of its feature distribution: µ = fµ(F1(x)), σ = fσ(F1(x)), where
fµ and fσ are the two layers of the model that predict the mean and standard
deviations, F1(x) and F2(x) is two parts of VGG that split by conv4 3. From
this distribution, a N -dimensional feature vector is randomly sampled as the
robust feature for the input image, which is used for subsequent CFR and object
detection in the training phase. Then the reconstruction loss can be defined as:

  \begin {aligned} \mathcal {L}_{re}&=\|G\left (\bm z\right )-x\|^2, \quad \bm z \sim \mathcal {N}(\bm \mu , \bm \Sigma ), \\ \end {aligned}          (3)

where ∥ · ∥2 indicates ℓ2 norm, and x is the clean image. Once this feature
distribution is learnt, our model can generate the similar features for an adversarial
image and its clean counterpart image. Thus, in the testing phase, the predicted
mean µ is directly used as the robust feature for detection.

Furthermore, similar to VAE, we also have an additional constraint to prevent
the predicted distribution from collapse (e.g., µ and σ are approximate to zero):

  \begin {aligned} \mathcal {L}_{kld}&=\textstyle \sum ^{N}_{i=1} \frac {1}{2N}\left (-\log \sigma _i^{2}+\mu _i^{2}+\sigma _i^{2}-1\right ),\\ \end {aligned} 








 

 
 

 

 (4)
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Overall, the total loss of our RobustDet is summarized as follows,

  \mathcal {L}=\beta (\mathcal {L}_{det}+a\mathcal {L}_{aid})+b\mathcal {L}_{re}+c\mathcal {L}_{kld},         (5)

where β, a, b and c are the hyper-parameters.

5 Experiments

5.1 Implementation Details

Our experiments are conducted on PASCAL VOC [8] and MS-COCO [18] datasets.
Mean average precision (mAP) with IoU threshold 0.5 is used for evaluating the
performance of standard and robust models.

The proposed method is rooted in the one-stage detector SSD [19] with
VGG16 as the backbone. Considering that Batch Normalization would increase
the adversarial vulnerability [1], we make a modification on VGG16 without
batch normalization layers [19]. In experiments, we use the model pre-trained on
clean images for adversarial training and employ Stochastic Gradient Descent
(SGD) with a learning rate of 10−3, momentum 0.9, weight decay 0.0005 and
batch size 32 with the multi-box loss.

For the robustness evaluation, we follow the same setting to MTD [34] and
CWAT [5] for a fair comparison and use three different attacks, PGD [21], CWA [5]
and DAG [32]. Among them, CWA and DAG are specifically designed for object
detectors. For adversarial training, we also follow the same attack setting to
MTD [34] and CWAT [5] for a fair comparison; namely, we use the PGD-20
attacker with budget ϵ = 8 to generate adversarial examples [34]. And we set
the margin in Laid as γ = 0.6 and NT is calculated from the mini-batch, and
hyper-parameters in L as β = 0.75, a = 3, b = 0.16 and c = 5. RobustDet*
represents RobustDet with CFR.

5.2 Detection Robustness Evaluation

In this section, we evaluate the proposed method in comparison with the state-of-
the-art approaches on the PASCAL VOC and MS-COCO datasets in Tab. 1 and
2. The scenarios in MS-COCO are more complex than PASCAL VOC, and thus
it is also more challenging to make the model robust on this dataset. Considering
that the object detector has two tasks of classification and localization, we can
use PGD to attack the classification (Acls) and localization (Aloc). For DAG
attacks, we perform 150 steps to make an effective attack. The experimental
results are provided in Tab. 1 and Tab. 2.

In Tab. 1 and Tab. 2, under different datasets, in compare with standard SSD,
MTD (rooted in SSD) suffers from a significant performance degradation on clean
images while gaining limited robustness. For example, on the PASCAL VOC
dataset, its mAP performance on clean images significantly drops from 77.5%

2 ↓ and ↑ indicate the mAP decrease or increase compared with the baseline SSD,
respectively. ’-’ indicates the result is not provided in the existing work.
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Table 1: The evaluation results using various adversarial attack method on
PASCAL VOC 2007 test set2.

Method Clean Acls Aloc CWA DAG

SSD 77.5 1.8 4.5 1.2 4.9

SSD-AT(Acls) [34] 46.7↓30.8 21.8↑20.0 32.2↓30.8 - 28.0↑23.1

SSD-AT(Aloc) [34] 51.9↓25.6 23.7↑21.9 26.5↑22.0 - 17.2↑12.3

MTD [34] 48.0↓29.5 29.1↑27.3 31.9↑27.4 18.2↑17.0 28.5↑23.6

CWAT(PGD-10) [5] 51.3↓26.2 22.4↑20.6 36.7↑32.2 19.9↑18.7 50.3↑45.4

RobustDet (ours) 75.4↓2.1 41.5↑40.0 45.2↑40.7 42.4↑41.2 52.0↑47.1

RobustDet* (ours) 74.8↓2.7 45.9↑44.1 49.1↑44.6 48.0↑46.8 56.6↑51.8

Table 2: The evaluation results using various adversarial attack method on MS-
COCO 2017 test set.

Method Clean Acls Aloc CWA DAG

SSD 42.0 0.4 1.8 0.1 8.1

MTD [34] 24.2↓17.8 13.0↑12.6 13.4↑11.6 7.7↑7.6 -

CWAT(PGD-10) [5] 23.7↓18.3 14.2↑13.8 15.5↑13.7 9.2↑9.1 -

RobustDet (ours) 36.7↓5.3 20.6↑20.2 19.4↑17.6 20.5↑20.4 24.5↑16.4

RobustDet* (ours) 36.0↓6.0 20.0↑19.6 19.0↑17.2 19.9↑19.8 16.5↑8.4

to 1.8% and 4.5% under Acls and Aloc attacks, respectively. It also exhibits a
poor robustness under CWA and DAG attacks with only 1.2% and 4.9% mAP,
respectively. Besides, as for existing robust methods, MTD and CWAT only
gain less than 30% mAP under Acls and 40% under Aloc and even lose almost
30% mAP on clean images compared with baseline SSD. Instead, our proposed
RobustDet not only obtains a high robustness on adversarial images, but also
ensures a comparable performance with standard SSD on clean images with a
slight performance decrease. On the PASCAL VOC dataset, RobustDet obtains
larger than 40% mAPs on adversarial images to defense detection attacks and just
loses 2.7% at most on clean images, in comparison with standard SSD. Besides, it
also presents a remarkable performance on the MS-COCO dataset. For instance,
RobustDet achieves 24.5% under the DAG attack with only 6% mAP decline at
most on clean images (RobustDet 36.7% vs. SSD 42.0%).

5.3 Model Evaluation and Analysis

Ablation Study on Laid. The adversarial image discriminator may also be
attacked. Thus, the AID loss is introduced to improve its robustness. As shown
in Tab. 3, without Laid RobustDet has a performance decrease on both clean and
adversarial images, especially on adversarial images. For instance, it drops by
4.2% mAP under the Acls attack and by 4.5% mAP under the CAW attack. The
absence of Laid makes it easier for AID to confuse clean and adversarial images.
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Table 3: The ablation study of our model under various adversarial attack method
on PASCAL VOC 2007 test set.

Method Clean Acls Aloc CWA DAG

RobustDet w/o Laid 74.9 37.3 44.9 37.9 51.8
RobustDet* w/o Lre 74.6 27.5 41.8 28.6 55.9
RobustDet 75.4 41.5 45.2 42.4 52.0
RobustDet* 74.8 45.9 49.1 48.0 56.6

(a) Acls PGD attack (b) Aloc PGD attack (c) Confidence distribution

Fig. 7: (a) and (b): The robustness of our model under attacks with ϵ = 8 using
different PGD steps. (c): Under the attack on Lcls and Lloc loss, the corresponding
loss changes between the adversarial image and the original image.

Ablation Study on Consistent Features with Reconstruction.We compare
RobustDet (without CFR) and RobustDet* (with CFR) for the ablation study
on CFR. On the PASCAL VOC dataset, as shown in Tab. 1 and 3, the detection
robustness has been improved with the CFR module by 4.1% gains at least
(RobustDet 47.5% vs. RobustDet* 45.9% under CWA attack) and by 5.6% at
most (RobustDet 42.4% vs. RobustDet* 46.8% under CWA attack). On MS-
COCO, Tab. 2 shows that RobustDet* has a lower performance than RobustDet
under all the attacks. This reconstruction can be treated as VAE in VGG-16 whose
capacity is relatively limited to learn so many categories, thus compromising
the overall training of the model and leading to the performance degradation.
Besides, CFR has two losses of Lkld and Lre. In Tab. 3, without Lre, RobustDet*
has a significant decrease under attacks with similar performance on clean images,
compared with the baseline. This indicates the model cannot effectively predict
both samples into the same distribution.

Attack using Different PGD Steps. To verify the generalization ability of our
model against different steps of PGD attacks, we follow the setting of MTD [34]
and provide the performance of the model under various steps of PGD attack
on PASCAL VOC in Fig. 7(a) and (b). For non-robust SSD, the performance
decreases dramatically with the increase of iteration steps. Our model shows a
strong robustness under a variety of PGD attacks with different number of steps.
Combined with the experimental results of CWA and DAG in Tab. 1, it shows
that our model has a promising generalization ability and can defend well even if
the attacks are somewhat different from the training.
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Analysis on Gradient Disentanglement. As discussed in Sec. 3.2, the detec-
tion robustness bottleneck can attribute to a conflict between learning adversarial
images and clean images. It can be observed from Fig. 3, a adversarially-trained
SSD model that learns adversarial (clean) images have a negative impact on the
learning of clean (adversarial) images, making the loss increase. But a adversarially-
trained RobustDet has almost no similar impact. The average loss variation is
less than 0.1. It is also evidenced from Fig. 4 that the gradients of RobustDet on
both samples are almost orthogonal. These indicate RobustDet can effectively
alleviate the detection robustness bottleneck and learn both images better.
Analysis on Confidence Distribution. To further verify our RobustDet ad-
dressing the conflict, the confidence distribution of bounding boxes that the robust
model MTD and our RobustDet produce on clean and adversarial images(Acls

and Aloc), respectively, in Fig. 7(c). Here we set the filtering threshold for the
confidence of the bounding box to be 0.3. From which it is evident that the
confidence of the MTD robust model on both the clean and adversarial images is
quite low (around 0.7 on clean, 0.6 on Acls and Aloc), which is also a manifestation
of conflict. In contrast, the confidence of our proposed RobustDet model is fairly
high on clean images (around 0.95, by 0.25 higher than MTD) and the confidence
on adversarial images is mostly distributed in the higher part (around 0.65 on
Acls and 0.7 on Aloc). This result can also well illustrate that our method can
effectively alleviate the conflict and the detection robustness bottleneck.

6 Conclusion
In this work, we investigate the detection robustness bottleneck that the object
detector discards a portion of its performance on the clean image while gaining
a very limited robustness from adversarial training. Empirical analysis from
the loss change and gradient interference indicate that the detection robustness
bottleneck is mainly attributed to the conflict between the object detector in
learning clean images and adversarial images. It is hard for object detectors to
learn both images well, so it needs a learning trade-off between them.

In terms of the detection robustness bottleneck on both clean images and
adversarial images, we propose the RobustDet method based on adversarially-
aware convolution. RobustDet utilizes an Adversarial Image Discriminator (AID) to
generate different weights to clean images and adversarial images, which guides the
generation of adversarially-aware convolutional kernels to adaptively learn robust
features. RobustDet also employs the Consistent Features with Reconstruction
(CFR) to make the features of clean and adversarial images in the same distribution
and empower the model to reconstruct the adversarial image into a clean image.
This can further enhance the detection robustness. Besides, experimental results
show that our method can effectively alleviate the detection robustness bottleneck.
It is demonstrated that our method can significantly improve the robustness of
the model without losing the performance on clean images.
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