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Abstract—Recent advances in deep learning based algorithms have made it feasible to

transfer image styles from an example image to other images. However, it is still hard to

transfer the style of color sketches due to their unique texture statistics. In this paper, an

automatic color sketch generation system is developed from existing real-time style

transfer methods. We choose a suitable image from a set of carefully selected color

sketch examples as the style target for every content image during training. We also

propose a novel style transfer convolutional neural network with spatial refinement to

realize high-resolution style transfer. Finally, gouache color is introduced to the generated

images via a linear color transform followed by a guided filtering operation. Experimental

results illustrate that our system can produce vivid color sketch images and greatly

reduce artifacts compared to previous state-of-the-art methods.

& CHARACTERIZED BY LINE strokes and regional

gouache paints, color sketching is one of the

most popular artistic forms to depict visual

scenes. As shown in Figure 1, skilled painters

can create visually pleasant color sketches by

combining their perceptual abstraction of natu-

ral scenes with painting styles. In computer

graphics, generating color sketches from photo-

graphs also attracts a lot of research in the field

of nonphotorealistic rendering (NPR). State-

of-the-art research provides interactive systems

to assist users in creating vivid color sketch

painting works.1,2 Recently, customers enjoy

recording beautiful photographs and sharing

them on social networks after using a variety of

image editing software. Among them, automatic

style transfer software, which provides easy-

to-use artistic augmentations, are becoming

much more frequently used than ever before.

Digital Object Identifier 10.1109/MCG.2019.2899089

Date of publication 12 February 2019; date of current version

22 March 2019.

Deep Learning in Computer Graphics

26
0272-1716 � 2019 IEEE Published by the IEEE Computer Society IEEE Computer Graphics and Applications

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 16,2022 at 07:43:46 UTC from IEEE Xplore.  Restrictions apply. 



This brings an increasing demand for novel auto-

matic style transfer techniques in computer

graphics and multimedia technology.

Recently, many neural network based algo-

rithms have yielded impressive results on trans-

ferring the style from one example image to

other images.3,6 In their works, a deep convolu-

tional neural network (CNN) pretrained for image

classification is utilized as a feature extractor.

Style transfer is then realized by minimizing the

difference between the style representation of

generated image and style target image as well

as the difference between the high-level feature

activations of generated image and content tar-

get image. These algorithms are inspired by the

CNN-based texture synthesis,7 in which the

Gram matrix is used to characterize the image

style. Their remarkable results demonstrate that

a neural network based algorithm is good at

transferring impressionist painting style to input

images, imitating art works from famous artists

like Vincent van Gogh and Pablo Picasso. Follow-

ing this direction, we can think that neural net-

work based algorithms3,6 might also be efficient

in transferring color sketch style to natural pho-

tographs. Here, we provide one example in

Figure 2. Through the comparison between

Figure 2(b) and (c), it can be observed that find-

ing a style target image with similar texture sta-

tistics is crucial for a better quality color sketch

style transfer. This is due to two reasons. First,

there exists a great difference between color

sketch artworks and impressionist oil paintings:

oil paintings usually feature heavy textures,

while color sketches are usually smooth and

more sensitive to defects, such as redundant

sketches and color variations. Second, models

proposed in previous studies3,6 capture image

styles as multiscale texture representatives, in

which sematic content and local textures are not

separated. Thus, as shown in Figure 2(c), redun-

dant sketches and color variations exist in the

result when the style target is not suitable for

the content image. This problem remains in the

real-time style transfer approach,6 since it also

adopts one single image as the style target dur-

ing the whole training phase.

Besides, both the original neural style trans-

fer method3 and the real-time approach6 do not

provide gouache colors, which are fundamental

characteristics of color sketches. Therefore, it is

extremely difficult to obtain pleasurable color

sketch style transfer results with existing neural

style transfer approaches.

In this paper, we present a CNN-based fully

automatic system, which transforms natural

photographs to color sketches. Our system

extends the real-time style transfer6 and is capa-

ble of converting an arbitrary natural photo-

graph to color sketch. During the training phase,

instead of using a single image as the style tar-

get, we build a set of color sketch examples with

different texture statistics. We also develop an

online style target selection method to pick up a

suitable image as the style target for every train-

ing content image. Meanwhile, we improve the

image transfer network by designing a novel

CNN architecture with multiscale refinement and

dilated residual learning. In the final step of our

system, we perform the linear color transform

which is proposed in one state-of-the-art interac-

tive color-sketch drawing system1 and a guided

filtering operation to enhance gouache colors in

our generated style transfer images. To our

Figure 1. Examples of color sketches created by artists.
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knowledge, our system is the first one to tackle

this color sketch generation problem using deep

CNN. In addition, it is also noteworthy that there

are various kinds of painting styles in color

sketch artworks, and our system aims to gener-

ate an image with typical and fundamental char-

acteristics of color sketches, such as stylized

line sketches and gouache style colors.

The major contributions of this paper can be

summarized as follows.

� We set up a color sketch example set and

develop an online style target selection

method to overcome the shortcomings

caused by using one single image as the style

target in original neural network based style

transfer methods.

� We design a novel style transfer network,

called STSRnet, to generate high-quality color

sketches. The proposed architecture integra-

tes state-of-the-art techniques, such as top–

down refinement, multiscale feature fusion,

dilated convolution, and residual learning.

� The whole system could be trained in an end-

to-end manner and generates pleasurable

color sketches efficiently during the infer-

ence phase without any iteration.

RELATED WORK
Neural style transfer: Automatic image style

transfer has been extensively studied in the com-

puter graphics literature, and also has various

applications in industry. Recently, Gatys et al.3

drew inspirations from CNN-based texture

synthesis7 and achieved remarkable image style

transfer results using an iterative optimization

method.

Typically, a content image and a style target

image are provided, and the Gram matrix is

utilized to measure the correlations between

different channels of feature activations and

represent the image style. Feature activations in

different layers are used to represent image con-

tent. A pretrained deep CNN8 was used to extract

the feature activations from its intermediate

layers. During optimization, the transferred

image was generated by simultaneously minimiz-

ing the style and content losses. More recently,

there are many follow-up works. Gatys et al.4,5

proposed an algorithm to preserve the color of

content image and transfer different styles to dif-

ferent regions in input images according to the

semantic information. Johnson et al.6 sped up

the time-consuming iterative optimization in

original neural network-based style transfer by

Figure 2. Example results for color sketch generation using the original neural style transfer method3 and our

proposed system. (a) Original image. (b) and (c) Style transfer results using the original neural style transfer

method3 but adopting (e) and (f) as the style target image, respectively. (d) Automatically generated color

sketches using our proposed system. (e) and (f) Real color sketch artworks selected from our proposed style

example set, both of them are drawn by an artist.

Deep Learning in Computer Graphics

28 IEEE Computer Graphics and Applications

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 16,2022 at 07:43:46 UTC from IEEE Xplore.  Restrictions apply. 



building a feed-forward CNN to tackle the style

transfer task. However, among existing CNN-

based automatic style transfer methods and

applications, none of them is designed specifi-

cally to tackle the problem of transferring gou-

ache painting style to natural images.

Color sketch generation: Usually, genera-

ting pleasurable color sketches requires

artistic abstractions of image content, which is

challenging for fully automatic algorithms to

extract. Thus, state-of-the-art style transfer sys-

tems for color sketch generation such as Li

et al.1 and Wen et al.,2 all resort to users’ inter-

actions to perform scene parsing. Although sig-

nificant efforts were made in their work to

design an interface for efficient interactive

scene parsing, it was still time consuming. In

order to obtain high-quality color sketch

results, it also demanded considerable users’

sketching skills.

Lu et al.9 converted natural images to vivid

pencil drawings by rendering edges and adjust-

ing tone automatically. However, since this algo-

rithm directly transformed image gradients to

pencil strokes, plenty of details still existed in

the results, which led to messy sketches in com-

plex scenes or textured regions.

CNN Architectures for image transform:

Deep CNNs are wildly adopted in image trans-

form tasks such as image colorization,10 image

to image translation,11 real-time style transfer6

mentioned above, and texture synthesis.7

Although their architectures differ in detailed

settings, basically they learn from CNN architec-

tures built for image classification8,12 and seman-

tic segmentation13,14 because all of them could

be regarded as CNN-based dense pixelwise pre-

diction tasks. Among them, consistent efforts

have been made to improve the spatial resolu-

tion of the final prediction. Here, we conclude

three noteworthy trends among recent CNN

architectures designed for dense pixelwise pre-

diction tasks: dilated convolutions,14 residual

learning,6,12 and top–down refinement.15

Besides, instance normalization16 developed

from batch normalization17 also benefits the

training process by normalizing the contrast of

each image separately. In this paper, we propose

an image transform CNN architecture consisting

of all above state-of-the-art techniques.

OUR APPROACH
Our system is extended from the perceptual

loss based real-time style transfer method.6 In

the training phase, our system learns a convolu-

tional image transform network fðwÞ by applying

two complementary perceptual losses lFcontent and

lFstyle, which represent image content reconstruc-

tion and color sketch style transfer, respectively.

Instead of directly calculate the pixelwise dis-

tance, each perceptual loss adopts a pretrained

CNN to measure the perceptual difference

between the generated color sketch image and

target images. The image transform network con-

verts the input image to color sketch which is

then fed into different perceptual loss networks.

The gradients of all perceptual losses are accu-

mulated and backpropagated to update the

parameters in the image transform net, thus the

whole pipeline could be trained in an end-to-end

manner.

Although integrating three perceptual loss

networks increases the total size of our system

during the training phase, our training is still effi-

cient since the parameters in the perceptual loss

networks do not need to be updated. More

importantly, all the perceptual loss networks

could be discarded during inference. The final

output is generated with a single feed-forward

path of a learned image transform network and a

gouache color transform processing.

Style Transfer Network With Spatial Refinement

In this section, our style transfer network

with spatial refinement (STSRnet) is intro-

duced. STSRnet is a novel architecture of

CNNs to realize the end-to-end style transfer.

The detailed architecture of the proposed net-

work is introduced and compared with the

image transform network proposed by John-

son et al.6 Johnson’s network6 mainly consists

of a bottom-up feed-forward path stacked with

several residual blocks. Dilated convolution

layers are adopted in the residual blocks to

aggregate the semantic information through

the feed-forward path at the cost of sacrificing

spatial resolution. Finally, with additional

deconvolution layers stacked on the top of

the residual blocks, the final output image of

their network is up-sampled back to the same

spatial resolution of the input image.
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Our proposed architecture improves

Johnson’s network6 and is designed with two

goals: one is to aggregate semantic information

without sacrificing the spatial resolution; another

goal is to fuse the feature activations of low-level

layers with high-level semantic cues. We achieve

both goals by building the whole architecture

with a refinement strategy and employing dilated

convolutions14 in residual blocks. The proposed

architecture is illustrated in Figure 3. Specifically,

our architecture consists of two paths: a bottom–

up path, which stacks dilated residual blocks

with receptive fields of increasing size, and a top–

down path, which gradually concatenates feature

activations from low-level residual blocks in each

refinement stage. The final output image has the

same spatial size as the input image. Such refine-

ment strategy has been proved effective for

object segmentation.15 To our knowledge, our

system is the first one to adapt this refinement

strategy for style transfer task. More importantly,

comparing with the VGG-based8 deep refinement

networks proposed by Pinheiro et al.,15 dilated

residual blocks and instance normalizations are

both employed in our architecture to improve

the quality of transformed image.

Dilated Residual Blocks: As shown in the right

part of Figure 3, two types of residual blocks are

utilized in the proposed architecture. Both of

them consist of a main path which contains

three convolution layers and a shortcut path for

residual learning. “Dilated Res Block �2” denotes
the residual block which doubles the number of

feature channel. It contains a dilated convolution

layer14 both in the main path and the shortcut

path. “Dilated Res Block” denotes the residual

block without changing the channel number of

its input and output. In this case, the shortcut

path is simply an identity mapping.

Instance Normalization: Following the sugges-

tions given by Ulyanov et al.,16 we adopt instance

normalization layers in our architecture to incor-

porate instance-specific contrast normalization.

The major difference between the instance nor-

malization layer and batch normalization layer is

that the former performs normalization for the

feature activations of a single image instead of

for the whole batch. It, thus, encourages the con-

trast of the stylized image to be similar to the

contrast of the style target image and improves

the quality of style transferred images.

Loss Design and Training Method

As discussed in the introduction, when train-

ing the style transform network, using a single

image as style target usually leads to artifacts

due to the structural and color mismatch

between training images and style targets. We

address this problem by building a style image

set and applying an online style target selection

method during the training phase.

Style Image Set: In order to create a set of

color sketch examples images with variants of

structures, we select a set of representatives

from the training data according to the semantic

cues of each image. Specifically, for each training

image, we first extract the feature activation Fl

with Nl channels of the lth intermediate layer

using a pretrained image classification CNN F. In

our algorithm, VGG168 is used as the pretrained

image classification CNN F. Then, the Gram

matrix GF;l 2 RNl�Nl is calculated according to

Fl.3 Each element of GF;l represents the correla-

tion between feature channels c and c0 of FF;l by

Figure 3. Architecture of the proposed STSRnet and dilated residual blocks.
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calculating inner product

GF;l
c;c0 ¼ FF;l

c FF;l
c0 :

Note that FF;l
c and FF;l

c0 are reshaped to one-

dimensional (1-D) vectors before calculating the

inner product.

Then, we cluster all the training images into

C clusters using k-means based on the Gram

matrix. To reduce the dimensionality, we per-

form clustering with only the diagonal elements

of the Gram matrix. These elements are consid-

ered as the global structure and color descrip-

tor because different channels of the high-level

feature activations of the deep CNN already

encodes rich semantic cues in these diagonal

entries. Finally, we build the set of color sketch

examples by letting a few artists draw the C

center images. In our experiments, we find that

a set of C ¼ 10 color sketch images covers suffi-

cient structure and color variants. The cluster-

ing results and our color sketch examples are

provided in the supplemental material. We

could observe that images in the same cluster

are similar in structure, texture, and color,

while the center images of different clusters

cover certain variations.

Online style target selection: During the training

stage, we search for nearest neighbor nk�
i
for each

input image xi in the set of cluster center images,

and use the corresponding color sketch Sk�
i
of the

nearest neighbor as the style target image

k�i ¼ argmin
k

fF;l xið Þ � fF;l nkð Þ�
�

�
�
2

2

where k�i represents the index of the style target

in the proposed example set S for xi. fF;lð�Þ
denotes the vector of the diagonal elements of

gram matrix GF;l. We compute feature activa-

tions for this selected style target at layer

relu4_2 in F and set l ¼ 21 accordingly. To

improve the efficiency of the training stage, the

indices of the selected style target images for all

training images could be obtained in advance

and recorded in a lookup table.

Accordingly, the style loss function in our

color sketch style transfer model is defined as

follows:

lFstyle fW ; xi; sk�
i

� �

¼
X

l2L
GF;l fW xið Þð Þ �GF;l Sk�

i

� ��
�
�

�
�
�

2

2
:

We calculate the style loss at layer relu3_3

and relu4_3 in F and set L ¼ {16, 23} accordingly.

Combination of perceptual losses: We define

the total loss function for our color sketch style

transfer as a weighted summation of all the per-

ceptual losses

L ¼ �1l
F
content fW ; xið Þ þ �2l

F
style fW ; xi; sk�

i

� �

:

We utilize the same content loss as in previ-

ous style transfer systems3,6

lFcontent fW ; xið Þ ¼
X

l

FF;l fW xið Þð Þ � FF;l xið Þ�
�

�
�
2

2
:

During training phase, the total loss function

is minimized using stochastic gradient descent

and the gradients are backpropagated through

the network to update parameters in the pro-

posed STSRnet fW . In our experiments, we set

�1 ¼ 1 and �2 ¼ 4, respectively.

Gouache Color Transform

To generate a visually pleasurable color

sketch artwork, it is also very important to con-

vert existing pixel colors to gouache-style colors

automatically. As discussed by Gatys et al.,4 one

potential shortcoming of the original neural net-

work based style method is that the color of the

style image is copied to the final result. As a

result, it often leads to bizarre results when the

color distribution of the style target image is not

suitable for the input image. Although the style

example set and the style target selection

method proposed in our system alleviate such

mismatch, unsatisfying colors still exist in the

results. Also, the CNNs tend to learn a mean

color (e.g., gray) during training. Several works

have been proposed to extend the original meth-

ods to preserve the color distribution of the con-

tent image.4,5 However, gouache-style colors are

not provided in these methods. Therefore, we

propose one postprocessing method, which can

solve above shortcomings and adding vivid gou-

ache-style color to the transferred results

effectively.

Specifically, we discard the color channels

of the image generated by the STSRnet and apply

the linear transform given by Li et al.1 to predict

the desired gouache color for each pixel. The

detailed operations of the proposed color
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transform are illustrated in Figure 4. Specifically,

we obtain the initial style transfer result using

the proposed STSRnet, discard the chromatic

channels, and only keep the lightness channel.

Meanwhile, the linear color transform given by

Li et al.1 is applied to the input image and the

color transform result image is converted to

CIELab color space. The a, b channels of the

color transform result image are subsequently

filtered with the lightness channel of the initial

style transfer inference as a guidance. The bene-

fits of this guided filtering here are twofold: it

aligns the a, b channels with the lightness chan-

nel of the initial style transfer result in case the

locations of the pixels on line sketches deviate

from the original object boundaries during

style transfer; it also removes fine chromatic var-

iations of input image. Finally, we obtain the final

color sketch by concatenating the lightness

channel of the initial style transfer result with

the filtered a, b channels and converting it back

to RGB color space. Some examples are provided

in the supplemental material.

RESULTS AND COMPARISON
We adopt the Microsoft COCO dataset19 as

the training data for the proposed STSRnet. In

order to obtain the color sketch version of the

images in our style image set, we invite an artist

to manually draw 10 images using digital pen tab-

lets and Photoshop. During the training phase,

each image in the COCO dataset is resized to

256 � 256 and the minibatch size is set to 4. We

use Adam to train the proposed STSRnet. The

total number of iteration is set to 10K and the

learning rate is 1 � 10-3. Our proposed STSRnet

has been extended from the code of real-time

style transfer6 on the popular deep learning

framework Torch. An Nvidia Titan X GPU is used

in our experiment. Our training takes around 8 h.

During the inference phase, it only takes less

than 0.5 s for an input image with 512 � 512

pixels. Galleries of color sketches generated by

our system are provided in the supplemental

material.

Ablation Study

To discover the effectiveness of our pro-

posed style image set and STSRnet, we conduct

an ablation study to compare generated images

of our system under different settings.

In Figure 5, panel (b) shows the result of our

system which employs the proposed style

image set and the style target selection method

during training. Panel (c) shows the result

when one single image is used as the style

Figure 4. Pipeline of proposed gouache color transform.
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target. Specifically, we randomly select one

sketch image from the proposed style image set

then fix the selected image as the style target

for all input images during training. Since a sin-

gle style image could not match the structure

and color of each training image, it leads to

severe artifacts in the style transfer results,

such as a lot of meaningless sketches. Panel (d)

shows the generated result when all the images

in the proposed style image set are adopted

but the proposed style target selection method

is not utilized. Specifically, for each input

image, one style image is randomly selected

from the proposed color sketch image set then

set as the style target for this input image dur-

ing training. The result shows that the artifacts

remain due to the mismatch between the train-

ing image and the style target image in terms of

their structure and color. Through the compari-

son between panels (b) and (c), (d), we can

observe that the proposed style image set and

the style target selection method can greatly

reduce the artifacts in the generated style

transfer images and produce high-quality syn-

thesized color sketch images. Our proposed

STSRnet is used as the image transform model

in this comparison. In addition, panel (e) shows

result obtained by our system but replacing

our proposed STSRnet with the CNN architec-

ture in the real-time style transfer method.6

Enlarged regions are shown in panel (f).

Through the comparison between panels (b)

and (e), we can observe that our proposed

STSRnet contributes significantly to better reso-

lution (e.g., patterns on the airplane) and line

sketches (e.g., contour of the airplane).

Comparison With State-of-the-Art Neural Style

Transfer Methods

Figure 6 compares color sketches generated

by our system with the real-time style transfer

method,6 the color preserving neural style trans-

fer method,4 and the deep image analogy.18 Since

the real-time style transfer6 only allows a single

image as style target, in this experiment, we train

the real-time style transfer model by randomly

selecting one color sketch from our style target

set and fix it as the style target for all training

images. We also set a same ratio between the

content loss and style loss in our system and the

real-time style transfer to ensure a fair compari-

son. From column (b) in Figure 6, we could

observe that our system consistently outper-

forms the original real-time style transfer

method. Column (c) compares our results with

the color preserving neural style transfer

Figure 5. (a) Input image. (b) Our result. (c) Result obtained by our system but randomly selecting one style

image from the proposed style image set and fixing the selected image as the style target during training.

(d) Result obtained by our system but randomly selecting one image from the proposed style set for each

input image as the style target during training. (e) Result obtained by our system but replacing our proposed

STSRnet with the CNN architecture in the real-time style transfer method.6 Gouache color transform is not

involved. (f) First row shows enlarged regions in (b) while second row shows enlarged regions in (e).

March/April 2019 33
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 16,2022 at 07:43:46 UTC from IEEE Xplore.  Restrictions apply. 



method.4 As suggested in the color preserving

neural style transfer method,4 the colors of the

style image are transformed using the 3-D color

matching to match the colors of the content

image before doing neural style transfer. For all

results in column (c), we use the same style tar-

get image as in column (b) and set the ratio

between the content loss and style loss as sug-

gested in the original neural style transfer

method.3 All results in column (d) are obtained

by deep image analogy.18 Our results also dem-

onstrate significant improvement compared to

the results of the color preserving neural style

transfer method4 and deep image analogy.18

Comparison With a State-of-the-Art

Interactive System

As shown in Figure 7, we compare color

sketches generated by our system with the

results obtained by Li’s interactive system.1 Our

Figure 6. Comparison with state-of-the-art neural style transfer methods. In the upper part, first row shows

the corresponding style target image or image set used to obtain style transfer results. For the remaining rows,

column (a) shows the original photographs. Columns (b)–(e) show results generated by the real-time style

transfer method,6 the color preserving neural style transfer method,4 deep image analogy,18 and our system.

Our system demonstrates superior performance. In the lower part, we further provide one detailed comparison

between our method and the deep image analogy method. In the first column, original content image is shown

in the first row and our result is shown in the second row. In the second to fourth columns, the style target

images are shown in the first row while the corresponding results generated by the deep image analogy

method are shown in the second row. All these style target images are randomly selected from our proposed

style target image set. As can be observed, although promising results might be obtained by picking up a

more suitable style target image, there usually exist artifacts in the results of the deep image analogy method.

Besides, it is hard to generate pleasurable gouache colors by only using the deep image analogy method.
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results present an overall similar color sketch

style as those created manually using the inter-

active system. The average time consumption

for a novice user to create one color sketch

using Li’s system1 is 6 min, while our system is

fully automatic and highly efficient: it only takes

less than 0.5 s for an input image with 512 � 512

pixels.

We also note that in regions with heavy tex-

tures, for example, tree leaves highlighted in

Figure 7 with red boxes, the style of sketchy lines

generated by our system is different from those

created based on users’ input: dense sketches

usually exist in our results, while Li’s results

prefer to depict tree leaves using very sparse

and long curves. This is because Li’s system

encourages users to perform interactive image

segmentation with sparse line strokes, but our

system learns image stylization according to per-

ceptual losses rather than performing image seg-

mentation explicitly.

Comparison With NPR Methods

We conduct a comparison with NPR methods

which produce stylized images that look similar

to color sketches. A comparison is shown in

Figure 8, in which the NC filter based image styli-

zation results are generated by superimposing

the magnitude of filtered images to the filtered

images themselves. Compared with the results

of NC filter20 and Pencil Drawing,9 our results

both highlight the object contours with sparser

Figure 7. Comparison with a state-of-the-art interactive color sketch generation system.

Figure 8. Comparison with state-of-the-art NPR methods.
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sketches and produce stylized regional abstrac-

tion and gouache colors.

CONCLUSION
This paper extends the deep neural network

based style transfer for color sketch image gen-

eration. We have integrated the benefits of image

transform network with spatial refinement and

automatic target image selection method. Exper-

imental results demonstrate that our system

overcomes the limitations of the original neural

network based style transfer methods and pro-

duces vivid color sketches. Besides color sketch,

our ideas of building example style target set and

online style target selection method will poten-

tially benefit other noise-sensitive image style

transfer tasks.

In the future, one potential direction is to

combine the automatic generation pipeline with

humans’ interactions and investigate how such a

data-driven approach could contribute to more

smart software to help artists’ creation. In addi-

tion, another potential direction is to extend our

system for video stylization applications.
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