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Abstract. Referring image segmentation aims to predict the foreground
mask of the object referred by a natural language sentence. Multi-
modal context of the sentence is crucial to distinguish the referent from
the background. Existing methods either insufficiently or redundantly
model the multimodal context. To tackle this problem, we propose a
“gather-propagate-distribute” scheme to model multimodal context by
cross-modal interaction and implement this scheme as a novel Linguistic
Structure guided Context Modeling (LSCM) module. Our LSCM mod-
ule builds a Dependency Parsing Tree suppressed Word Graph (DPT-
WG) which guides all the words to include valid multimodal context of
the sentence while excluding disturbing ones through three steps over
the multimodal feature, i.e., gathering, constrained propagation and dis-
tributing. Extensive experiments on four benchmarks demonstrate that
our method outperforms all the previous state-of-the-arts.

Keywords: Referring segmentation · Multimodal context · Linguistic
structure · Graph propagation · Dependency Parsing Tree

1 Introduction

Referring image segmentation aims at predicting the foreground mask of the
object which is matched with the description of a natural language expression. It
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enjoys a wide range of applications, e.g., human-computer interaction and inter-
active image editing. Since natural language expressions may contain diverse
linguistic concepts, such as entities (e.g. “car”, “man”), attributes (e.g. “red”,
“small”) and relationships (e.g. “front”, “left”), this task is faced with a broader
set of categories compared with a predefined one in traditional semantic segmen-
tation. It requires the algorithm to handle the alignment of different semantic
concepts between language and vision.

A general solution to this task is first extracting visual and linguistic features
respectively, and then conducting segmentation based on the multimodal fea-
tures generated from the two types of features. The entity referred by a sentence
is defined as the referent. Multimodal features of the referent is hard to be distin-
guished from features of the background due to the existence of abundant noises.
To solve this problem, valid multimodal context relevant to the sentence can be
exploited to highlight features of the referent and suppress those of the back-
ground for accurate segmentation. Some works tackle this problem by straight-
forward concatenation [16,32] or recurrent refinement [4,21,25] of visual and
linguistic features but lack the explicit modeling of multimodal context. Other
works introduce dynamic filters [29] or cross-modal self-attention [39] to model
multimodal context. However, these multimodal contexts are either insufficient
or redundant since the number of dynamic filters [29] is limited and weights for
aggregating multimodal context in self-attention [39] may be redundant due to
dense computation operations.

To obtain valid multimodal context, a feasible solution is to exploit linguis-
tic structure as guidance to selectively model valid multimodal context which
is relevant to the sentence. As illustrated in Fig. 1, each word can gather multi-
modal context related to itself by cross-modal attention. For example, the word
“dog” corresponds to the red masks of two dogs in the image. Multimodal con-
text of each word is a partial and isolated comprehension result of the whole
sentence. Therefore, constrained communication among words is required to
include valid multimodal context and exclude disturbing ones. Afterwards, com-
municated multimodal context of each word contains appropriate information
relevant to the whole sentence and can be aggregated to form valid multimodal
context for highlighting features of the referent.

To realize the above solution, we propose a Linguistic Structure guided mul-
timodal Context Modeling (LSCM) module in this paper. Concretely, features
of the input sentence and image are first fused to form the multimodal features.
Then, as illustrated in Fig. 1, in order to fully exploit the linguistic structure of
the input sentence, we construct a Dependency Parsing Tree suppressed Word
Graph (DPT-WG) where each node corresponds to a word. Based on the DPT-
WG, three steps are conducted to model valid multimodal context of the sentence.
(1) Gather relevant multimodal features (i.e., context) corresponding to a spe-
cific word through cross-modal attention as the node feature. At this step, each
word node contains only multimodal context related to itself. Take Fig. 1 as an
example, the segments corresponding to “dog” and “table” are denoted by red
and blue masks respectively. The multimodal features inside each mask are atten-
tively gathered to form the node feature of the graph. (2) Propagate information
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Fig. 1. Illustration of our proposed LSCM module. We construct a Dependency Pars-
ing Tree suppressed Word Graph (DPT-WG) to model multimodal context in three
steps. 1) Gather. Multimodal context relevant to each word are gathered as feature of
each word node. Therefore, each word corresponds to some visually relevant segments
in the image. For example, word “dog” corresponds to two red segments in the left
image. 2) Propagate. DPT is exploited to further guide each word node to include
valid multimodal context from others and exclude disturbing ones through suppressed
graph propagation routes. Gray dotted and black solid lines denote suppressed and
unsuppressed edges in DPT-WG respectively. 3) Distribute. Features of all word
nodes are distributed back to the image. Segments corresponding to the input words
are all clustered around the ground-truth segmentation region, i.e., the golden dog on
pink table in the right image. (Best viewed in color).

among word nodes so that each word node can obtain multimodal context of the
whole sentence. Initially, nodes in the word graph are fully-connected without any
constraint on the edge weights. However, two words in the sentence may not be
closely relevant to each other and unconstrained communication between them
may introduce disturbing multimodal context. For example, the words “golden”
and “pink” in Fig. 1 modify different entities respectively (“dog” and “table”) and
have relatively weak relevance between each other. Unconstrained (i.e., extensive)
information propagation between “golden” and “pink” is unnecessary and may
introduce disturbing multimodal context. Therefore, we utilize Dependency Pars-
ing Tree (DPT) [3] to describe syntactic structures among words to selectively sup-
press certain weights of edges in our word graph. The DPT-WG can guide each
word node to include valid contexts from others and exclude disturbing ones. After
propagation, updated node features acquire information of the whole sentence.
As shown in Fig. 1, the five words communicate and update their features under
the structural guidance of our DPT-WG. (3) Distribute the updated node fea-
tures back to every spatial location on the multimodal feature map. As shown in
Fig. 1, the segments corresponding to the input words are all clustered around the
ground-truth referring segmentation. It shows the updated multimodal features
contain more valid multimodal context. In addition, we also propose a Dual-Path
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Multi-Level Fusion module which integrates spatial details of low-level features
and semantic information of high-level features using bottom-up and top-down
paths to refine segmentation results.

The main contributions of our paper are summarized as follows:

– We introduce a “gather-propagate-distribute” scheme to model compact mul-
timodal context by interaction between visual and linguistic modalities.

– We implement the above scheme by proposing a Linguistic Structure guided
Context Modeling (LSCM) module which can aggregate valid multimodal
context and exclude disturbing ones under the guidance of Dependency Pars-
ing Tree suppressed Word Graph (DPT-WG). Thus, more discriminative mul-
timodal features of the referent are obtained.

– Extensive experiments on four benchmarks demonstrate that our method
outperforms all the previous state-of-the-arts, i.e., UNC (+1.58%), UNC+
(+3.09%), G-Ref (+1.65%) and ReferIt (+2.44%).

2 Related Work

2.1 Semantic Segmentation

In recent years, semantic segmentation has made great progress with Fully Con-
volutional Network [27] based methods. DeepLab [5] replaces standard convo-
lution with atrous convolution to enlarge the receptive field of filters, leading
to larger feature maps with richer semantic information than original FCN.
DeepLab v2 [6] and v3 [7] employ parallel atrous convolutions with different
atrous rates called ASPP to aggregate multi-scale context. PSPNet [43] adopts a
pyramid pooling module to capture multi-scale information. EncNet [42] encodes
semantic category prior information of the scenes to provide global context.
Many works [1,23] exploit low level features containing detailed information to
refine local parts of segmentation results.

2.2 Referring Image Localization and Segmentation

Referring image localization aims to localize the object referred by a natural lan-
guage expression with a bounding box. Some works [15,22,36] model the rela-
tionships between multimodal features to match the objects with the expression.
MAttNet [40] decomposes the referring expression into subject, location and rela-
tionship to compute modular scores for localizing the referent. Comparing with
referring image localization, referring image segmentation aims to obtain a more
accurate result of the referred object, i.e., a semantic mask instead of a bounding
box. Methods in the referring segmentation field can be divided into two types,
i.e., bottom-up and top-down. Bottom-up methods mainly focus on multimodal
feature fusion to directly predict the mask of the referent. Hu et al. [16] proposes
a straightforward concatenation of visual and linguistic features from CNN and
LSTM [13]. Multi-level feature fusion are exploited in [21]. Word attention [4,32],
multimodal LSTM [25,29] and adversarial learning [31] are further incorporated
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to refine multimodal features. Cross-modal self-attention is exploited in [39] to
capture the long-range dependencies between image regions and words, intro-
ducing much redundant context due to the dense computation of self-attention.
Top-down methods mainly rely on pretrained pixel-level detectors, i.e., Mask R-
CNN [11] to generate RoI proposals and predict the mask within the selected pro-
posal. MAttNet [40] incorporates modular scores into Mask R-CNN framework to
conduct referring segmentation task. Recent CAC [8] introduces cycle-consistency
between referring expression and its reconstructed caption into Mask R-CNN
to boost the segmentation performance. In this paper, we propose a bottom-up
method which exploits linguistic structure as guidance to include valid multi-
modal context and exclude disturbing ones for accurate referring segmentation.

2.3 Structural Context Modeling

Modeling context information is vital to vision and language problems. Typical
methods like self-attention [33,34] has shown great power for capturing the long
range dependencies within the linguistic or visual modality. In addition, more
complicated data structures are also explored to model context information.
Chen et al. [9] proposes a latent graph with a small number of nodes to cap-
ture context from visual features for recognition and segmentation. In referring
expression task, graphs [14,36–38] using region proposals as nodes and neural
module tree traversal [26] are also explored to model multimodal contexts to
some extent. Different from them, we propose to build a more compact graph
using referring words as nodes and exploit dependency parsing tree [3] to selec-
tively model valid multimodal context.

3 Method

The overall architecture of our model is illustrated in Fig. 2. We first extract
visual and linguistic features with a CNN and an LSTM respectively and then
fuse them to obtain the multimodal feature. Afterwards, the multimodal feature
is fed into our proposed Linguistic Structure guided Context Modeling (LSCM)
module to highlight multimodal features of the referred entity. Our LSCM mod-
ule conducts context modeling over the multimodal features under the structural
guidance of DPT-WG. Finally, multi-level features are fused by our proposed
Dual-Path Fusion module for mask prediction.

3.1 Multimodal Feature Extraction

Our model takes an image and a referring sentence with T words as input.
As shown in Fig. 2, we use a CNN backbone to extract multi-level visual fea-
tures and then transform them to the same size. Multi-level visual features
{V2, V3, V4, V5} correspond to {Res2, Res3, Res4, Res5} features of ResNet [12],
where Vi ∈ R

H×W×Cv , i ∈ {2, 3, 4, 5}, with H, W and Cv being the height,
width and channel number of visual features respectively. Since we conduct the
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Fig. 2. Overall architecture of our model. Multi-level visual features Vi, i ∈ [2, 5], word
features Q and coordinate feature P are first fused to get multimodal features Mi.
Then Mi are fed into our proposed LSCM to model valid multimodal context guided
by linguistic structures. The output features Z̃i are combined with previous features and
further fused through our Dual-Path Multi-Level Fusion module for mask prediction.

same operations on each level of the visual features, we use V to denote a single
level of them for ease of presentation. For the input sentence of T words, we
generate features of all the words Q ∈ R

T×Cl with an LSTM [13]. To incorpo-
rate more spatial information, we also use an 8D spatial coordinate feature [25]
denoted as P ∈ R

H×W×8. Afterwards, we fuse the features {V,Q, P} to form
the multimodal feature M ∈ R

H×W×Ch , for which a simplified Mutan fusion [2]
is adopted in this paper: M = Mutan(V,Q, P ). Details of Mutan fusion are
included in the supplementary materials. Note that our method is not restricted
to Mutan fusion, any other multimodal fusion approach can be used here.

3.2 Linguistic Structure Guided Context Modeling

In this module, we build a Dependency Parsing Tree suppressed Word Graph
(DPT-WG) to model valid multimodal context. As illustrated in Fig. 3, we first
gather feature vectors of all the spatial locations on multimodal feature M into
T word nodes of WG. Then we exploit DPT [3] to softly suppress the disturbing
edges in WG for selectively propagating information among word nodes, which
includes valid multimodal contexts while excluding disturbing ones. Finally, we
distribute features of word nodes back to each spatial location.

Gather: We get a cross-modal attention map B ∈ R
T×HW with necessary

reshape and transpose operations as follows:

B′ = (QWq2)(MWm)T , (1)

B = Softmax(
B′

√
Ch

), (2)
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Fig. 3. Illustration of our LSCM module. We use cross-modal attention between words
features Q and multimodal feature Mi to gather feature for each word node. Then
we exploit DPT to softly suppress disturbing edges in the initial fully-connected WG
and conduct information propagation. Finally, the updated features of word nodes are
distributed back as Z̃i to incorporate valid multimodal context into original features.

where Wq2 ∈ R
Cl×Ch and Wm ∈ R

Ch×Ch are learned parameters. Then we apply
the normalized attention map B to M to gather the features into T word nodes:

X = BM, (3)

where X = [x1;x2; ...;xT ] ∈ R
T×Ch denotes the features of word nodes. Each

xt, t = 1, 2, ..., T encodes the multimodal context related with the t-th word.
Propagate: The word graph used for context modeling is fully-connected.

Thus, the adjacency matrix A ∈ R
T×T is computed as follows:

A′ = (XWx1)(XWx2)T , (4)

A = Softmax(
A′

√
Ch

), (5)

where Wx1 ∈ R
Ch×Ch , Wx2 ∈ R

Ch×Ch are parameters for linear transformation
layers. At present, the edge weights among word nodes are represented by multi-
modal feature similarities which are unconstrained. However, two words may not
be closely related in the sentence and unconstrained information propagation
between them may introduce plenty of noises, yielding disturbing multimodal
context. To alleviate this issue, we exploit DPT to selectively suppress disturb-
ing edges which do not belong to the DPT structure. Concretely, we compute a
tree mask S ∈ R

T×T to restrict the adjacency matrix A as follows:

Sij =

⎧
⎪⎨

⎪⎩

1, i ∈ C(j) or j ∈ C(i)

α, otherwise,

(6)
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where i, j ∈ [1, T ] are nodes in the parsing tree, C(j) denotes the children nodes
set of node j, and α is a hyperparameter which is set as 0.1 in our paper. Then we
multiply the adjacency matrix A with the tree mask S elementwisely to obtain
a soft tree propagation route At to diffuse information on the graph by:

At = A � S, (7)

where � is elementwise multiplication. We then adopt one graph convolution
layer [19] to propagate and update node features as follows:

Z = (At + I)XWz, (8)

where I is an identity matrix serving as shortcut connection to ease optimization,
Wz ∈ R

Ch×Ch is the parameter for updating node features, and Z ∈ R
T×Ch is the

output of the graph convolution. After propagation, each word node can include
valid multimodal context and exclude disturbing ones through the proper edges
in parsing tree, forming robust features aligned with the whole sentence.

Distribute: Finally, we distribute the updated features of word graph nodes
Z back to all the spatial locations using the transpose of B by:

Z̃ = BTZ. (9)

We further conduct max pooling over word features Q ∈ R
T×Cl to obtain sen-

tence feature L ∈ R
Cl , and then tile L for H × W times to form grid-like

sentence feature L̂ ∈ R
H×W×Cl . As shown in Fig. 2, the distributed feature

Z̃ ∈ R
H×W×Ch is concatenated with V , L̂ and P and then fed into a 1 × 1

convolution to get the output feature Y ∈ R
H×W×Co .

3.3 Dual-Path Multi-Level Feature Fusion

It has been shown that the integration of features at different levels can lead to
significant performance improvement of referring image segmentation [4,21,39].
We therefore also extract 4 levels of visual features {V2, V3, V4, V5} as the input of
our LSCM module. Then we utilize convolutional LSTM [35] to fuse the output
features of the LSCM module {Y2, Y3, Y4, Y5}. The fusion process is illustrated
in Fig. 2. We propose a Dual-Path Multi-Level Fusion module which sequentially
fuses the features from 4 levels through the bottom-up and top-down paths. The
input sequence of ConvLSTM is [Y5, Y4, Y3, Y2, Y3, Y4, Y5]. The first bottom-up
path sequentially integrates low-level features, which is able to complement high-
level features with spatial details to refine the local parts of the mask. However,
high-level features, which are critical for the model to recognize and localize the
overall contour of the referred entities, are gradually diluted when integrating
more and more low-level features. Thus, the top-down fusion path which reuses
Y3, Y4 and Y5 after bottom-up path is adopted to supplement more semantic
multimodal information. Our Dual-Path Multi-Level Fusion module serves as a
role to enhance features with both high-level semantics and low-level details for
better segmentation performance.
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4 Experiments

4.1 Experimental Setting

Datasets: We conduct extensive experiments on four benchmarks including
UNC [41], UNC+ [41], G-Ref [28] and ReferIt [17]. UNC and UNC+ [41] are
both collected from MS COCO dataset [24]. The UNC dataset contains 19, 994
images with 142, 209 referring expressions for 50, 000 objects while the UNC+
dataset contains 19, 992 images with 141, 564 expressions for 49, 856 objects.
UNC+ has no location words hence it is more challenging than UNC. G-Ref [28]
is also built upon the MS COCO dataset [24]. It consists of 26, 711 images with
104, 560 referring expressions for 54, 822 objects. The expressions are of average
length of 8.4 words which is much longer than that of the other three datasets
(with average length less than 4). ReferIt [17] is composed of 19, 894 images with
130, 525 referring expressions for 96, 654 objects. It also contains stuff categories.

Implementation Details: Following previous works [21,39], we choose
DeepLab-ResNet101 [6] pre-trained on Pascal VOC dataset [10] as our back-
bone CNN. Res2, Res3, Res4 and Res5 are adopted for multi-level feature
fusion. Input image is resized to 320 × 320. The maximum length of each refer-
ring expression is set to 20. For feature dimensions, we set Cv = Cl = Ch =
1000, Co = 500. α = 0.1 in our final model. The network is trained using Adam
optimizer [18] with an initial learning rate of 2.5e−4 and a weight decay of 5e−4.
We apply a polynomial decay with power of 0.9 to the learning rate. CNN is
fixed during training. We use batch size 1 and stop training after 700K iter-
ations. GloVe word embeddings [30] pretrained on Common Crawl with 840B
tokens are used to replace randomly initialized ones. For fair comparison with
prior works, all the final segmentation results are refined by DenseCRF [20].

Evaluation Metrics: Following the setup of prior works [4,16,21,39], we
adopt overall intersection-over-union (Overall IoU ) and precision with different
thresholds (Pr@X ) as the evaluation metrics for our model. The Overall IoU is
calculated by dividing the total intersection area with the total union area, where
both intersection area and union area are accumulated over all test samples. The
Pr@X measures the percentage of prediction masks whose IoU is higher than
the threshold X, where X ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

4.2 Comparison with State-of-the-Arts

Table 1 summarizes the comparison results in Overall IoU between our method
and previous state-of-the-art methods. As illustrated in Table 1, our method
consistently outperforms both bottom-up and top-down state-of-the-art methods
on four benchmark datasets.

For bottom-up methods, STEP [4] densely fuses 5 feature levels for 25 times
and achieves notable performance gains over CMSA [39]. Our method outper-
forms STEP on all the splits using less times of multimodal feature fusion, which
indicates that our LSCM can capture more valid mulitmodal context informa-
tion to better align features between visual and linguistic modalities. Particularly,
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Table 1. Comparison with state-of-the-art methods on four benchmarks using Overall
IoU as metric. “n/a” denotes methods does not use the same split as others. “BU”
and “TD” denote “Bottom-Up” and “Top-Down” respectively.

Type Method ReferIt
test

UNC UNC+ G-Ref
val

val testA testB val testA testB

TD MAttNet [40] - 56.51 62.37 51.70 46.67 52.39 40.08 n/a

CAC [8] - 58.90 61.77 53.81 - - - 44.32

NMTree [26] - 56.59 63.02 52.06 47.40 53.01 41.56 n/a

BU LSTM-CNN [16] 48.03 - - - - - - 28.14

DMN [29] 52.81 49.78 54.83 45.13 38.88 44.22 32.29 36.76

RMI [25] 58.73 45.18 45.69 45.57 29.86 30.48 29.50 34.52

KWA [32] 59.09 - - - - - - 36.92

CMSA(vgg16) [39] 59.91 52.38 54.68 49.59 34.41 36.53 30.10 32.35

ASGN [31] 60.31 50.46 51.20 49.27 38.41 39.79 35.97 41.36

RRN [21] 63.63 55.33 57.26 53.95 39.75 42.15 36.11 36.45

Ours(vgg16) 63.82 55.41 57.92 52.54 41.18 44.32 35.78 39.78

CMSA [39] 63.80 58.32 60.61 55.09 43.76 47.60 37.89 39.98

STEP [4] 64.13 60.04 63.46 57.97 48.19 52.33 40.41 46.40

Ours 66.57 61.47 64.99 59.55 49.34 53.12 43.50 48.05

ReferIt is a challenging dataset on which pervious methods only achieve marginal
improvements. CMSA and STEP outperform RRN [21] by 0.17% and 0.50% IoU
respectively, while our method significantly boost the performance gain to 2.94%,
which well demonstrates the effectiveness of our method. Moreover, on UNC+
dataset which has no location words, our method also achieves 3.09% over STEP
on testB split, showing that our method can model richer multimodal context
information with less input conditions. In addition, we reimplement CSMA using
their released code and our method using VGG16 as backbone. Our VGG16-based
method also yields better performance on all 4 datasets with margins of 3.24% on
UNC, 7.79% on UNC+, 7.43% on G-Ref and 3.91% on ReferIt dataset, showing
that our method can well adapt to different visual features.

For top-down methods, MAttNet [40] and CAC [8] first generate a set of
object proposals and then predict the foreground mask within the selected pro-
posal. The decoupling of detection and segmentation relies on Mask-RCNN
which is pretrained on much more COCO images (110K) than bottom-up meth-
ods using only PASCAL-VOC images (10K) for pretraining. Therefore, com-
paring their performances with bottom-up methods may not be completely fair.
However, our method still outperforms MAttNet and CAC with large margins,
indicating the superiority of our method. In addition, on ReferIt dataset which
contains sentences about stuff, our method achieves state-of-the-art performance
while top-down methods may not be able to well handle them.

There are also many top-down works [14,36–38] in referring localization
field which adopt graphs to conduct grounding. Their graphs are composed of
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Table 2. Ablation studies on UNC val set. All models use the same backbone
(DeepLab-ResNet101) and DenseCRF for postprocessing. ∗The statistics of RRN-
CNN [21] are higher than those reported in the original paper which do not use Dense-
CRF. Row 8 and row 11 are the same models with different names.

Method Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 IoU (%)

1 RRN-CNN [21]∗ 46.99 37.96 27.86 16.25 3.75 47.26

2 +LSCM 61.26 52.93 43.39 27.38 6.70 54.87

3 +LSCM, GloVe [30] 63.13 54.20 43.38 27.54 6.78 55.93

4 +LSCM, GloVe, Mutan [2] 64.25 55.64 45.00 29.24 7.28 56.50

5 Multi-Level-RRN-CNN [21]∗ 65.83 57.45 46.76 31.91 10.40 57.61

6 +LSCM 68.33 61.16 51.59 36.98 11.57 59.67

7 +LSCM, GloVe [30] 70.56 62.89 52.91 38.07 11.99 60.98

8 +LSCM, GloVe, Mutan [2] 70.84 63.82 53.67 38.69 12.06 61.54

9 +Concat Fusion 68.49 60.78 50.92 34.87 9.94 60.10

10 +Gated Fusion [39] 69.08 62.46 50.73 35.42 11.27 60.46

11 +Dual-Path Fusion (Ours) 70.84 63.82 53.67 38.69 12.06 61.54

region proposals which rely on detectors pretrained on COCO and/or other large
datasets. However, our DPT-WG consists of referring words and uses DPT to
suppress disturbing edges in WG. Then, features of WG are distributed back
to highlight grid format features of the referent for bottom-up mask prediction.
Thus, our method is also different from NMTree [26] in which neural modules are
assembled to tree nodes to conduct progressive grounding (i.e., retrieval) based
on region proposals.

4.3 Ablation Studies

We perform ablation studies on UNC val set to verify the effectiveness of our
proposed LSCM module and the Dual-Path Fusion module for leveraging multi-
level features. Experimental results are summarized in Table 2.

LSCM Module: We first explore the effectiveness of our proposed LSCM
module based on single level feature. Following [39], we implement the RRN-
CNN [21] model without the recurrent refinement module as our baseline. Our
baseline uses an LSTM to encode the whole referring expression as a sentence
feature vector, and then concatenates it with each spatial location of the Res5
feature from DeepLab-101. Fusion and prediction are conducted on the concate-
nated features for generating final mask results. As shown in rows 1 to 4 of
Table 2, +LSCM indicates that introducing our LSCM module into the base-
line model can bring a significant performance gain of 7.61% IoU, demonstrating
that our LSCM can well model valid multimodal context under the guidance of
linguistic structure. Row 3 and Row 4 show that incorporating GloVe [30] and
Mutan [2] fusion can further boost the performance based on our LSCM module.

We further conduct the same ablation studies based on multi-level features.
All the models use our proposed Dual-Path Fusion module to fuse multi-level
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features. As shown in rows 5 to 8 of Table 2, our multi-level models achieve
consistent performance improvements as the single-level models. These results
well prove that our LSCM module can effectively capture multi-level context as
well. Moreover, we additionally adapt GloRe [9] for the referring segmentation
task over multi-level features and achieve 58.53% IoU and 67.23% Pr@0.5. The
adapted GloRe uses learned projection matrix to project multimodal features
into fixed number of abstract graph nodes, then conducts graph convolutions and
reprojection to refine multimodal features. Our +LSCM in row 6 outperforms
GloRe by 1.14% IoU and 1.10% Pr@0.5, indicating that building word graph
by cross-modal attention and incorporating DPT to suppress disturbing edges
between word nodes can better model valid multimodal context than GloRe.

Multi-level Feature Fusion: We compare different methods including Con-
cat Fusion, Gated Fusion [39] and our Dual-Path Fusion for multi-level feature
fusion. All the fusion methods take 4 levels of multimodal features processed
by our LSCM module as input. As shown in rows 9 to 11 of Table 2, our pro-
posed Dual-Path Multi-Level Fusion module achieves the best result, showing
the effectiveness of integrating both high-level semantics and low-level details.
In addition, the gated fusion from [39] conducts 9 fusion operations while ours
conducts 6 fusion operations with better performance.

Table 3. Experiments of graph convolution in terms of Overall IoU. n denotes number
of layers of graph convolution in our LSCM module. α = 0.1 here.

+LSCM, GloVe

n = 0 n = 1 n = 2 n = 3 n = 4 adaptive

UNC val 54.51 55.93 50.77 50.64 49.59 54.69

G-Ref val 38.94 40.54 39.29 37.74 37.50 37.41

Layers of Graph Convolution: In Table 3, we explore the effects of con-
ducting different layers of graph convolution in our LSCM module on UNC val
set and G-Ref val set. The results show that the naive increase of graph con-
volution layers in LSCM will deteriorate the segmentation performance, prob-
ably because multiple rounds of message propagation among all words muddle
the multimodal context of each word instead of enhancing it. Besides, adap-
tive which means number of the graph convolution layers equal to the depth of
DPT, yields lower performance than one layer of graph convolution. It indicates
that propagating information among word nodes without further constrain will
include more disturbing context. Conducting 1 layer of graph convolution to
communication between parents and children nodes is already sufficient without
introducing too much noises, which also makes our method more efficient. In
addition, n = 1 also outperforms n = 0 which shows communication among
words is necessary after gathering multimodal context for each word.

Edge Weights in Tree Mask: In Table 4, we explore how different values
of α in the tree mask S (Eq. 6) influence the performance of our LSCM. We can
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Table 4. Overall IoU results of different edge weights α in tree mask S. Experiments
are conducted on UNC val set. All the models use n = 1 layer of graph convolution.

+LSCM, GloVe

α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 1

55.01 55.93 55.44 55.49 54.77 55.12 54.81

observe that α = 0.1 achieves the best performance and outperforms α = 1 (WG
w/o DPT) by 1.12% IoU, which demonstrates that suppressing syntactic irrele-
vant edges in our word graph can reduce unnecessary information propagation
and exclude disturbing multimodal context. In addition, α = 0 yields inferior
performance to α = 0.1, indicating our DPT-WG (i.e., approximate spanning
tree) can obtain more sufficient information than a strict DPT.

Query: “the real cat not the reflection”

Query: “brown coat woman”

Query: “back row of doughnuts second from the right”

(i) (ii) (iv)(iii) (i) (ii) (iv)(iii)

Query: “guy cooking in middle”

“back row left 
most donut”

“middle row left 
most donut”

“middle row second 
from right donut”

“front row second 
from left donut”

“front row right 
most donut”

(a)

(b)

Query: “middle row second 
from left donut”

“back row right 
most donut”

Fig. 4. Qualitative Results of referring image segmentation. (a)(i) Original image.
(a)(ii) Results produced by the multi-level RRN-CNN baseline (row 5 in Table 2).
(a)(iii) Results produced by our full model (row 8 in Table 2). (a)(iv) Ground-truth.
(b) Results of customized expressions. Our model can adapt to new expressions flexibly.

Qualitative Results: Figure 4(a) presents the segmentation results pre-
dicted by our full model (row 8 in Table 2) and the multi-level RRN-CNN base-
line (row 5 in Table 2). Comparing (b) and (c) in Fig. 4, we can find that only
multi-level feature refinement without valid multimodal context modeling is not
sufficient for the model to understand the referring expression comprehensively,
thus resulting in inaccurate predictions, such as segmenting “coat” but ignoring
“brown” in the bottom-left of Fig. 4. As shown in Fig. 4(b), we also manually
generate customized expressions to traverse many the donuts. It is interesting
to find that our model can always understand different expressions adaptively
and locate the right donuts, indicating that our model is flexible and control-
lable. More qualitative results on four datasets are presented in supplementary
materials.
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far left guy

girl red shirt

front person right

(a) (b) (c) (d) (e)

Query: “far left guy”

Query: “girl in red shirt”

Query: “front person from right”

Fig. 5. Visualization of attention maps on the given words. (a) the original image.
(b)(c)(d) refer to the attention maps of the specific words below. (e) predictions of our
proposed method.

Visualization of Attention Maps: To give a straightforward explana-
tion about how our LSCM works, we visualize the attention maps of each node
(corresponding to the words of referring expression) to the spatial locations and
the results are shown in Fig. 5. The cross-modal attention maps correspond to
B obtained in the gather operation (Eqs. 1 and 2), which has size of T × HW .
Each row of B denotes the attention map of a certain word. The three words
are organized in sequential order. From Fig. 5 we find that a meaningful word
usually attends to its corresponding area in the image. For example, in the third
row of (b), the word “front” attends to the front area of the image, and in the
second row of (c), word “red” attends to the area of red shirt. Our LSCM module
is able to model valid multimodal context among these attended areas to obtain
a precise segmentation of the referring expression.

5 Conclusion and Future Work

In this paper, we explore the referring image segmentation problem by intro-
ducing a “gather-propagate-distribute” scheme to model multimodal context.
We implement this scheme as a Linguistic Structure guided Context Model-
ing (LSCM) module. Our LSCM builds a Dependency Parsing Tree suppressed
Word Graph (DPT-WG) which guides all the words to include valid multimodal
context of the sentence while excluding disturbing ones, which can effectively
highlight multimodal features of the referent. Our proposed model achieves state-
of-the-art performance on four benchmarks. In the future, we plan to adapt our
LSCM module into other tasks (e.g., VQA, Captioning) to verify its effectiveness.
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