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Abstract—Matching clothing images from customers and online shopping stores has rich applications in e-commerce. Existing
algorithms mostly encode an image as a global feature vector and perform retrieval via global representation matching. However,
distinctive local information on clothing is immersed in this global representation, resulting in sub-optimized performance. To address
this issue, we propose a novel Graph Reasoning Network (GRNet) on a similarity pyramid, which learns similarities between a query
and a gallery cloth by using both initial pairwise multi-scale feature representations and matching propagation for unaligned
representations. The query local representations at each scale are aligned with those of the gallery via an adaptive window pooling
module. The similarity pyramid is represented by a similarity graph, where nodes represent similarities between clothing components at
different scales, and the final matching score is obtained by message propagation along edges. In GRNet, graph reasoning is solved
by training a graph convolutional network, enabling the alignment of salient clothing components to improve clothing retrieval. To
facilitate future research, we introduce a new benchmark, i.e. FindFashion, containing rich annotations of bounding boxes, views,
occlusions, and cropping. Extensive experiments show that GRNet obtains new state-of-the-art results on three challenging
benchmarks, e.g. pushing the accuracy of top-1, top-20, and top-50 on DeepFashion to 27%, 66%, and 75% (i.e. 6%, 12%, and 10%
absolute improvements), outperforming competitors with large margins. On FindFashion, GRNet achieves considerable improvements
on all empirical settings.

Index Terms—Fashion retrieval, graph reasoning, similarity pyramid.

F

1 INTRODUCTION

F ASHION image retrieval between customers and online shop-
ping stores has various applications for e-commerce. Given a

street snapshot of a clothing image, this task requires searching for
the same garment item in an online store. It is a key step for further
applications such as generating descriptions of clothing, brands,
materials, and styles. While matching clothing across modalities
appears effortless for human vision, it is extremely challenging for
machine vision. The same clothing may exhibit large variations
due to occlusions, cropping, and viewpoint changes. Moreover,
garments may even differ in only small local regions, such as
logos.

The task of customer-to-shop clothing retrieval has witnessed
tremendous progress [1], [2], [3], [4], [5], [6], [7], [8], [9] due to
the advancement of convolutional neural networks (CNNs) [10],
[11], [12], [13], [14]. Existing methods mostly employ a global
similarity pipeline. For example, they first aggregate local features
into compact global features and then compute global similarities
between query and gallery images by using cosine or Euclidean
distance (see Figure 1 (a)). In the procedure of global feature
aggregation, the distinctive local regions of clothing would be sup-
pressed. In contrast, human vision verifies whether two clothing
items are the same by simultaneously comparing the query and
the gallery in terms of both global features such as fabric, colors,
textures and categories (e.g. “dress” or “t-shirt”), as well as local
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Fig. 1: Comparison between global similarity and a similarity
pyramid with graph reasoning. The left illustrates the global
similarity. The right panel shows the similarity pyramid with
graph reasoning, where scale 1 computes the global similarity,
and scales 2 and 3 include local similarities between all possible
combinations of local patches from each image pair. The dashed
gray line indicates that the similarity is calculated from two image
patches. The pyramid similarities (including the global and the
local) are reasoned mutually. The blue lines indicate interactions
between similarities within the same scale while the red dashed
lines indicate those from two different scales (best viewed in
color).
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Fig. 2: Comparison with state-of-the-art methods on the Deep-
Fashion consumer-to-shop dataset [3]. ImgDrop+GoogleNet and
Product+GoogleNet are the two best results ever reported [15].

features such as sleeve, collar, and logos. Moreover, human vision
instinctively focuses on common parts between the query and the
gallery, while ignoring those regions that only exist in the query
(or the gallery) due to occlusions, cropping or viewpoint changes.
We propose that for clothing retrieval and verification, comparing
clothing in both global and local patterns is complementary.

Inspired by the procedure above, we design a novel Graph
Reasoning Network (GRNet) on a similarity pyramid to compare
a query and a gallery image both globally and locally at different
similarity scales. As illustrated in Figure 1 (b), we extract CNN
features for all spatial regions at each pyramid scale. A critical
issue for matching two clothing is that the local clothing regions
are often mismatched. To deal with the misalignment between the
query and the gallery, we need to enumerate all the region pairs on
the same scale to calculate their similarities. However, as the local
regions are not equally important, similarities between aligned
regions should be dominant, while those between misaligned pairs
should be ignored.

Thus, we construct a pyramid defined by similarities between
clothing regions. This similarity pyramid can be formulated as a
graph, where each node of the graph is the similarity between
two corresponding clothing regions on the same scale, while each
edge is the normalized similarity of its connected nodes. The final
similarity (matching score) between a query and a gallery image
can be achieved by reasoning on this graph. GRNet contains a
key component of a graph convolutional network (GCN), which
performs graph reasoning by propagating messages among the
nodes.

The proposed GRNet greatly suppresses the performance
degradation caused by occlusions, cropping, viewpoint changes
and small logos, outperforming existing methods with large
margins as shown in Figure 2. Specifically, on the DeepFash-
ion [3] benchmark, GRNet significantly improves the accuracy
of top-1, top-20, and top-50 of the best ever reported results
(VAM+Product [15]) by 13%, 22% and 18%, and those of our re-
implemented state-of-the-art matching method [16] by 6%, 12%,
and 10% respectively. On the Street2Shop [2] and DeepFash-
ion2 [17] benchmark, GRNet outperform the previous methods
by a huge margin.

Although existing benchmarks such as Street2Shop [2],
DARN [1], and DeepFashion [3] have progressed the researches of
customer-to-shop clothing retrieval, and the detailed annotations
of occlusions, cropping and views are limited, impeding ablation
studies of this task. They are also unsuitable for analyzing the
influence of image variations on retrieval performance.

Therefore, we build a new customer-to-shop clothing retrieval
benchmark, named FindFashion, by revisiting existing datasets
and annotating attributes in terms of occlusions, cropping, and
views. FindFashion allows in-depth analysis of the impacts of
possible appearance variation on clothes retrieval. We further
introduce four new evaluation protocols of varying difficulties,
including Easy, Hard-View, Hard-Occlusion, and Hard-Cropping.
The training, validation, and test set splits on FindFashion will be
released for fair comparisons.

A preliminary version of this work is published in ICCV
2019 [18]. In this work, we inherit the idea of graph reasoning on
a similarity pyramid, but extend the conference version in several
aspects. First, we redesign multi-scale local feature extraction.
Instead of fixed spatial windows, the multi-scale local features
of queries are extracted with dynamic spatial windows with the
help of a tailor-designed adaptive window pooling module. The
dynamic spatial windows of the query are adjusted according
to the gallery so that local features of the query are aligned
with their corresponding ones of the gallery. As validated in our
experiments, this strategy consistently improves the final retrieval
performance. Second, we expand the original FindFashion with
the recently released DeepFashion2 [17] to a new benchmark, on
which we also perform experiments to investigate how cropping,
views, and occlusions affect the fashion retrieval performance.
Third, we conduct additional experiments on the benchmark Deep-
Fahion2 [17] comparing with other state-of-the-art approaches.
Fourth, we explore the application of GRNet in large scale
scenarios. We initially search efficiently the gallery clothes with
the global similarity, and obtain a list of candidates, which is re-
ranked via our GRNet with negligible runtime and computational
overhead. Finally, we provide a deeper analyses of the results.
e.g., the performances of our GRNet on FindFashion with different
subsets of training dataset. We also analyse the underlying reason
of performance differences with different settings to facilitate
fashion retrieval research in the future.

Our main contributions are summarized in three aspects.

• We propose an effective approach for clothing retrieval,
Graph Reasoning Network (GRNet) on a similarity pyra-
mid. GRNet computes similarities between a query and
a gallery image at different local clothing regions and
scales. GRNet has an important component of the graph
convolutional neural network to propagate similarities on
the pyramid, performing graph reasoning and producing
state-of-the-art performance.

• We validate the effectiveness of GRNet on three popular
datasets, DeepFashion, DeepFashion2 and Street2Shop.
GRNet outperforms state-of-the-art methods with signif-
icantly large margins.

• We annotate different variations and build the new
customer-to-shop retrieval benchmarks named FindFash-
ion, which allows the in-depth analysis of the effect of
variations on clothing retrieval. Extensive experiments
demonstrate that GRNet is more robust against occlusions,
cropping, or non-front views than previous methods.
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2 RELATED WORK

Datasets Street2Shop [2] DeepFashion [3] DeepFashion2 [17] FindFashion
#images 416,840 239,557 491,895 565,041
#pairs 39,479 195,540 873,234 382,230

Public split ! ! ! !

Bbox !– ! ! !

View 7 7 ! !

Occlusion 7 7 ! !

Cropping 7 7 ! !

TABLE 1: Comparison of customer-to-shop clothing retrieval
datasets.

Clothing retrieval. Pioneer work [7], [19], [20], [21] on
clothing retrieval utilized conventional features such as SIFT
and semantic preserving visual phrases. Recently, deep neural
networks have been widely applied in clothing retrieval and have
pushed research into a new phase [1], [2], [3], [4], [5], [6],
[8], [9], [17]. These methods usually follow a global similarity
computation and matching pipeline, i.e. aggregating local features
into a single global representation and then performing similarity
computation. [1], [3] explored attributes via multi-task learning
to learn representations that are related to specific tags such
as “crew neck”, “short sleeves” and “rectangle-shaped”; [17]
made full use of clothing landmark to improve fashion retrieval
using the Mask R-CNN [22] framework. [2], [23] investigated
different network architectures which are adept at extracting global
features for customer-to-shop clothing retrieval. Instead, [6], [9]
attempted to train models with weakly or noisy supervised signals
to reduce the dependency of data annotation and increase the
global feature learning efficiency. Recently, [4] utilized attribute
labels to focus on local discriminative regions. Similarly, [15]
focused on clothing regions and ignored cluttered backgrounds via
a cloth parsing subnetwork. Both works employed attention mech-
anisms in global feature aggregation to suppress local distractive
regions and upweight the discriminative regions to some extent.
However, they were highly dependent on explicit knowledge,
such as label and clothing parsing category definitions which
might be unavailable in real application scenarios. In contrast,
we conduct clothing matching computation via pyramid similarity
(including both global and local similarities) learning on a relation
graph, which can obtain salient component alignment through
similarity propagation, and thus achieve more accurate matching.
Notably, the proposed approach achieves similarities weighting by
end-to-end classification training without any explicit supervised
signals. There also exist some variants, such as dialog-based
clothes search [24] , video-based clothes retrieval [8], and attribute
feedback-based clothes retrieval [25], [26]. Their application sce-
narios and settings are different from ours.

Customer-to-shop clothing retrieval datasets. Some
customer-to-shop clothing retrieval datasets exist, as listed in
Table 1. Kiapour et al. [2] collected the Street2Shop dataset from
a large online retail store. It consists of 78,958 images, 39,479
customer-to-shop pairs, and 396,483 gallery images. Huang et
al. [1] collected the DARN dataset, which is composed of
upper-clothing images. It has 182,780 images, 91,390 pairs, and
91,390 gallery images, in which only query images are bounding
boxes. However, the training/testing split is not available and thus
prevents other research from making a fair comparison. Liu et
al. [3] released the DeepFashion dataset. It has 239,557 images,
195,540 customer-to-shop pairs, and 45,392 gallery images. It is
later revisited for fine-grained attribution recognition [27]. All

the above datasets lack detailed attributes that are most related
to clothing retrieval performance. Our benchmark FindFashion
contains detailed attribute annotations (e.g. views, occlusions and
cropping) so that the impacts of attributes on retrieval performance
can be analyzed in detail. We noticed that Ge et al. [17]
recently released the DeepFashion2 dataset with 491,895 images
and 873,234 pairs, which is concurrent with our work. We also
noticed that there exist other clothing datasets such as [28], [29],
[30], [31], [32] and [33]. These datasets mainly target at clothing
segmentation, attribution prediction and fashion comments but not
customer-to-shop clothing retrieval and lack clothing pairs for
evaluation. [25] released Fashion 200k, which aims at attribution
discovery and clothing retrieval with attribute manipulation and is
very different from our task.

Graph reasoning. Graphs naturally model the dependencies
between concepts, which facilitates research on graph reasoning,
such as Graph CNN [34], [35], [36], and Gated Graph Neural
Network (GGNN) [37]. These graph neural networks have been
widely employed in various tasks of computer vision and have
made very promising progress, e.g. object parsing [38], [39],
multi-label image recognition [40], visual grounding [41], [42],
[43], social relationship understanding [44], facial action unit
recognition [45] and action recognition [46]. These studies create
knowledge graph based on the relationship between different
entities, e.g. images, objects, proposals, and semantic categories.
Instead, we are the first to explore the use of a knowledge
graph to represent the similarity between different pairs of local
regions, and apply it to a new field of customer-to-shop clothing
retrieval. It can facilitate the weighting of local region pairs
and the enhancement of global matching through the iteration
of propagation between pyramid similarities relations, and thus
obtain more accurate matching computation.

Image retrieval. Our work is related to image retrieval ap-
proaches [47], [48], [49], [50], [51], [52], [53], [54], [55]. They
target at retrieving rigid objects such as buildings or scenes, and
often aggregate regional features into compact representations to
compute global similarities. Different from them, our GRNet aims
at retrieving more challenging non-rigid clothes. Moreover, our
GRNet captures both local and global similarities and conducts
graph reasoning on a similarity pyramid.

Metric learning. Our work is also related to general deep
metric learning [56], [57], [58], [59], [60]. However, they only
conducted experiments on the InShop clothing retrieval dataset,
while our work focuses on customer-to-shop clothing retrieval
which is much more challenging as analyzed in [3]. We have also
compared the proposed GRNet with the state-of-the-art method
[60] in our experiments.

Spatial transformation. Spatial transformation has been
widely adopted for geometric matching [61] and facilitating var-
ious vision tasks, such as image classification [62], [63], person
re-identification [16], [64], and scene text recognition [65]. Ge-
ometric matching [61] estimates the spatial transformation with
supervised learning, while we do it in a weakly-supervised fash-
ion without direct supervision signals. Compared with previous
work [62], [64], [65], our adaptive window pooling differs in
design: 1) they learn the spatial transformation of the input image
so that the input image is normalized to one hidden canonical
image, while we learn to spatially transform the query so that it
can be well aligned with the gallery; 2) they take an image as input
and then transform it, while we take correlation maps between the
query and the gallery as input and perform transformation on the
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query only.
Multi-scale representations. Multi-scale features over an

image or region are useful for various of computer vision tasks,
e.g., image retrieval [47], [66], visual recognition [67], text de-
tection [68] and semantic segmentation [69], [70]. The methods
in [66], [67], [69] extract multi-scale features via multi-scale
pooling, and then utilize the multi-scale features via concatenation.
In contrast, we utilize both multi-scale features and multi-scale
similarities. Moreover, we propose the graph reasoning network
to capture the relations between the global and local similarities
instead of just concatenating multi-scale features.

Image re-ranking. Image re-ranking [71], [72], [73], [74] is
widely performed for instance search, which has been investigated
for decades. They leverage the distribution of gallery set to re-
rank the retrieval results. In contrast, we utilize the information
of the query-gallery pair only without the help of the gallery set
manifold. Therefore, our proposed GRNet is orthogonal to those
re-ranking methods and can be combined with them for further
performance improvement.

3 METHODOLOGY

3.1 Motivation
The setup of the customer-to-shop clothing retrieval is as follows.
Given one customer clothing image query x and one shop clothing
gallery set G = {y}, it computes the similarities s between x
and y and ranks them. x = {xi} and y = {yi}, where xi ∈
RC×1 and yi ∈ RC×1 are local features of the customer clothing
image and the shop image, respectively. Previous customer-to-
shop clothing retrieval approaches [1], [2], [3], [4], [5], [6], [7],
[8], [9] adopt the following global similarity:

sg = Sg(A(x), A(y)), (1)

where A(·) is the aggregation function and Sg(·, ·) is the scalar
global similarity function. The aggregation function is usually the
average pooling or max-pooling operator. The similarity function
often adopts the cosine similarity or Euclidean distance. Ordi-
narily, the global similarity can reliably estimate the similarity be-
tween the query and the gallery. However, the aggregation function
might aggregate noisy features such as clutter background, other
objects, or unique regions that can only be observed in the query or
the gallery when existing occlusions, cropping or different views.
This undoubtedly greatly degrades clothing retrieval performance.

To address the above issues, [75], [76] computed the similarity
between the query and the gallery by summing local similarities
between local feature pairs with a greedy strategy as follows:

sl =
∑
i,j

wij
l Sl(x

i,yj), (2)

where Sl(·, ·) is the scalar local similarity function, and wij
l is the

scalar weight of local similarities Sl(x
i,yj), which is given by

wij
l =

{
1, if j = argmaxk(Sl(x

i,yk)).

0, otherwise.
(3)

However, greedily finding local feature pairs easily leads to
misalignment, which accumulates errors in the final estimated
similarity sl.

We attempt to make full use of both the global and local
similarities, and learn the importance of different similarities
(i.e.wij

l ) automatically to mitigate the above issues.

3.2 Graph Reasoning Network

For each query (or gallery) image, instead of extracting local
features xi ( or yi) and global featuresA(x) (orA(y)), we extract
multi-scale features at pyramid spatial windows, and obtains
{xi

l ∈ RC×1} (or {yi
l ∈ RC×1}) with xi

l (or yi
l ) being the ith

local feature for pyramid scale l, where l ∈ {1, · · · , L} indicates
the scale index from the top down. Therefore, x1

1 and y1
1 refer to

the global feature vector of the query and that of the gallery (i.e.,
A(x) and A(y)) respectively. For each scale l, assuming there
exist Rl × Cl local spatial windows for each image, we have a
total of

∑
lRlCl pyramid features.

Similarity pyramid graph. We build a similarity pyramid
graph with all region pair similarities being the graph nodes, and
the relations between two similarities being the edges. Formally,
given a pair of local features xi

l and yj
l from the same pyramid

scale l, we compute their similarity vector sijl ∈ RD×1 instead
of a similarity scalar in Equation 1 and 2, by a vector similarity
function given by

Sp(xi
l,y

j
l ) =

P
∣∣∣xi

l − yj
l

∣∣∣2∥∥∥∥P∣∣∣xi
l − yj

l

∣∣∣2∥∥∥∥
2

, (4)

where|·|2 and ‖·‖2 indicate the element-wise square and l2−norm
respectively. P ∈ RD×C is a projection matrix which projects
pyramid feature difference vectors from the C dimension to a
lower D dimension. Similarity vectors are guaranteed to have the
same magnitude by performing l2−normalization. For any node
pair in the graph sijl1 and smn

l2
, we define a scalar edge weight

wl1ij,l2mn
p , which is given by

wl1ij,l2mn
p =

exp((Touts
ij
l1

)
ᵀ
(Tins

mn
l2

))∑
l,p,q

exp((Touts
ij
l1

)
ᵀ
(Tins

pq
l ))

, (5)

where sᵀ indicates the transpose of the vector s. Tin ∈ RD×D

and Tout ∈ RD×D are the linear transformations of incoming
edges and outgoing edges for each graph node respectively. When
l1 = l2, wl1ij,l2mn

p are intra-scale edges. i.e., their two connected
similarity nodes come from the same scale. When l1 6= l2,
wl1ij,l2mn

p are inter-scale edges. i.e., their two nodes come from
different scales. Inter-scale edges enable similarities with different
scales to propagate messages from each other. In this way, the
similarity pyramid graph is defined as G = (N,E), where
N = {sijl } and E = {wl1ij,l2mn

p }.
Similarity reasoning. We reason the similarity sijl by con-

ducting a sequence of similarity propagation, linear transforma-
tion, and non-linear activation operator. Concretely, similarity is
first propagated as

ŝijl1 =
∑

l2,m,n

wl1ij,l2mn
p smn

l2 (6)

=
∑

l2,m,n

wl1ij,l2mn
p Sp(xm

l2 ,y
n
l2). (7)

Then, the linear transformation and the non-linear activation are
conducted as

hij
l1

= ReLU(Wŝijl1), (8)

where W ∈ RC
′
×D is the learnable parameters. Equations (6)

and (8) can be easily implemented by graph convolution [35],
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Fig. 3: The overall framework of the proposed GRNet. Given one query and gallery pair, their features extracted by deep convolutional
networks are fed into Similarity Computation to build a similarity pyramid graph with all region pair similarities being the graph nodes.
In the Feature Extraction, the local features of query are dynamically extracted via the adaptive window pooling based on the features
of query and gallery while those of gallery are extracted via max-pooling. In the Similarity Computation, xi

l is the ith local feature
of the query at scale l while yj

l is the jth one of the galleries, and sijl is their similarity vector. Furthermore, the global and local
similarities are propagated and updated via Similarity Reasoning. It finally outputs whether the input image pair belongs to the same
clothing.

followed by the nonlinear ReLU. We iteratively reason the simi-
larity pyramid T times by setting smn

l2
on the right-hand side of

Equation (6) at the current step to hmn
l2

from the previous step.

3.3 Adaptive Window Pooling

For each scale l, we extract Rl × Cl local features for each
image. The preliminary version of this work [18] divides each
image to Rl × Cl equally and extracts one C dimensional local
feature for each window via max-pooling. Therefore, the Rl ×Cl

spatial windows are fixed for all images. Although it is simple,
local features of the query and the gallery under the same scale
fixed windows might be misaligned as the query clothing and
the gallery clothing are simply cropped according to bounding
boxes without alignment during preprocessing, and the salient
components may be divided into different windows. This kind
of misalignment could introduce errors when computing local
similarities and damage the representation of local features. In
this section, we propose adaptive window pooling to mitigate the
misalignment so that the spatial windows of the query for local
features are adjusted adaptively according to those of the gallery
with fixed windows, as illustrated in Figure 4.

To achieve adaptive window pooling, we first compute the cor-
relation map between the feature maps of the query and the gallery,
which is used to predict four vertices for each window, and then
rectify original feature maps to target feature maps via Thin Plate
Spline (TPS) transformation [77]. The local features are finally
extracted by max-pooling on the target feature maps. Formally,
given the query feature map X ∈ RH×W×C and the gallery
feature amp Y ∈ RH×W×C , we first compute the correlation
map Fc ∈ RH×W×(H×W ) and predict one normalized vertex
coordinate matrix Vl ∈ [0, 1]2×Nl with Nl being the number of
window vertices for scale l based on Fc. Given the predefined
target vertex coordinate matrix Vt

l ∈ R2×Nl , we then estimate
one TPS transformation Tl

tps, which is used to rectify the original
query feature map X to one target feature map Xt

l ∈ RH×W×C .
The ith local feature at the lth scale xi

l is extracted at the ith
windows defined by Vt

l over the feature map Xt
l . To this end,

we design one adaptive window pooling module consisting of a

Fixed windowsGallery Adaptive windows

Fig. 4: Illustration of adaptive windows. The first and second rows
show examples with the scale of 2 × 2 and 3 × 3, respectively.
The first column shows the fixed spatial windows of the gallery.
The second column shows the fixed spatial windows of the query
in [18], while the third’s shows the proposed adaptive windows,
which are adjusted based on the content of the gallery.

correlation unit, vertex prediction unit, TPS transformation unit,
and average pooling layer, as shown in Figure 6.

3.3.1 Correlation Unit
Since adaptive window pooling aims at adjusting the spatial
windows of the query according to the content of the gallery, we
embed the correlation between local features of the query and
the gallery by calculating spatial position similarities between the
query and gallery feature maps inspired by [61]. Compared with
element-wise addition or multiplication, correlation can capture
the spatial relation between the query and the gallery, as proven
in [55].

Mathematically, given the query and gallery feature maps
X and Y, the correlation unit outputs the correlation map
Fc ∈ RH×W×(H×W ) by calculating the local feature similarity
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Scale : 1 × 2 Scale : 2 × 1 Scale : 2 × 2 Scale : 1 × 3 Scale : 3 × 1 Scale : 3 × 3

Fig. 5: Vertices which need to be predicted or are fixed for different
scales. The blue points are the spatial window vertices on the
feature map X of the query which need to be predicted and thus
can be adjusted adaptively. We predict 5, 5, 5, 12, 12, and 12
vertices for scale 1 × 2, 2 × 1, 2 × 2, 1 × 3, 3 × 1, and 3 × 3
respectively. The red points indicate four corners of the query
which are fixed for all scales.

Name Input Kernel Size Channels
conv-1 Correlation maps 3× 3 32
conv-2 conv-1 3× 3 64

maxpool-1 conv-2 2× 2 64
conv-3 maxpool-1 3× 3 128
conv-4 conv-3 3× 3 256

maxpool-2 conv-4 3× 3 256
fc-1 maxpool-2 1× 1 512
fc-2 fc-1 1× 1

∑
l Nl × 2

TABLE 2: Architecture of the vertex prediction unit.

between the query and the gallery at different position combina-
tions, which is given by

f ijkc =
yijᵀ∥∥yij
∥∥2 xikjk∥∥xikjk

∥∥2 , (9)

where f ijkc is the scalar element of Fc at position (i, j, k). yij and
xikjk are the local feature vector of tensor Y at spatial position
(i, j) and that of X at spatial position (ik, jk). k = Wik + jk is
an auxiliary indexing variable for (ik, jk). Thus, the scalar f ijkc

represents the similarity between the local feature of the gallery at
position (i, j) and that of the query at position (ik, jk).

3.3.2 Vertex Prediction Unit
Given Fc as input, the vertex prediction unit predicts Vl ∈
[0, 1]2×Nl for the lth scale with Nl being the number of vertices
predicted. In total, it outputs

∑
lNl normalized 2-dimensional

coordinates. Figure 5 shows the detailed configuration of the
vertices that need to be predicted.

The vertex prediction unit is a lightweight convolutional neural
subnetwork. It consists of four convolutional layers, each of which
is followed by one ReLU, two max-pooling layers with stride 2,
one global max-pooling layer, and two full-connected layers with
one ReLU between them. The detailed architecture of the vertex
prediction unit is listed in Table 2.
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Unit
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Fig. 6: Architecture of the adaptive window pooling module.

3.3.3 TPS Transformation Unit
For each scale l, we rectify the original query feature map X
to one target feature map Xt

l , where the max pooling can be
conducted to extract local features with the help of the TPS
Transformation Unit.

For each vertex in Vl, we would like to transform it to its
corresponding vertex in one target vertex matrix Vt

l , which are
set to vertices of fixed spatial windows of the gallery at scale l.
In addition, the coordinates of four corner vertices of the query
(i.e., [0, 0]ᵀ, [0, 1]ᵀ, [1, 0]ᵀ and [1, 1]ᵀ) remain unchanged after
transformation as shown in Figure 5. Concatenating the four
corner vertices with Vl and Vt

l , we obtain augmented predicted
vertex matrix and augmented target vertex matrix Vl and V

t

l

respectively. In this way, the tuple 〈Vl,V
t

l〉 forms the control
points of the TPS transformation.

As performed in [65], [77], we parameterize the TPS transfor-
mation as:

zli = Tl


1
zti

φ(||zti − vt
l1||2)

...
φ(||zti − vt

l(Nl+4)||2)

 , (10)

where zti ∈ [0, 1]2×1 is one sampling 2-dimensional position
coordinate of the target feature map, φ(x) = x2 log(x) is the
radial basis kernel. Tl ∈ R2×(Nl+7) is the TPS transformation
matrix for scale l. zli ∈ [0, 1]2×1 is the 2-dimensional coordinate
of the position of the source feature map, which corresponds to
zti. Inspired by [65], we have one close-form solution of Tl by
substituting for all vertex pairs of 〈Vl,V

t

l〉 in Equation (10) and
solving a linear system.

Once we have Tl in Equation (10), we compute Xt
l via

bilinear interpolation as follows:

Xt
l(z

t
i) = B(X, zli), (11)

where B is the bilinear interpolation and Xt
l(z

t
i) indicates the

local feature vector of Xt
l at position zti.

The bilinear interpolation, the TPS solving and the trans-
formation process are differentiable [62]. Therefore, the TPS
transformation unit can be inserted into deep neural networks that
can be trained end-to-end.

3.4 Network training
Network architecture. Figure 3 illustrates the overall framework
of the proposed graph reasoning network. It consists of four
modules: feature extraction, similarity computation, similarity
reasoning and classification loss. In the feature extraction module,
we employ CNN (e.g., GoogleNet [78] and ResNet [13]) as the
backbone, and extract pyramid features on its last convolution
activation. The query pyramid features are pooled over adaptive
windows while the gallery ones over predefined spatial windows
with different pyramid sizes. Both the query and gallery share the
same feature extraction backbone. In the similarity computation
module, we compute the similarity between all possible local
feature combinations between the query and the gallery at the
same pyramid scale. In the similarity reasoning module, we
employ a stack of graph convolution and ReLU operators.

End-to-end training. We use the cross-entropy loss over the
final reasoned global similarity vector (i.e., h11

1 ) and the ground
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Setups E HO HC HV
#Validation 125863 4920 15883 47164

#Test 30746 1250 3883 11383

TABLE 3: Statistics of query pairs of four evaluation setups on
FindFashion.

truth s̄ corresponding to the query and the gallery (x,y). We train
the whole network including the adaptive window pooling module
end-to-end with the cross-entropy loss. In this way, adaptive
windows of queries, similarities, and the importance of each local
region are jointly learned.

3.5 Large Scale Fashion Retrieval
In large-scale scenarios, retrieval systems typically contain the
modules of initial search with a hashing-based Approximated
Nearest Neighbor (ANN) search [79] or fast global similarity
computation such as Euclidean distance, and re-ranking. In this
case, we can first use global features (i.e., global-pooled 1x1
features before graph reasoning module) to conduct the initial
search before applying GRNet to re-rank the resulted short list. We
empirically found that this strategy can scale up the application
of GRNet without accuracy drop. Moreover, our method can
be accelerated by neural network quantization techniques such
as binary networks [80] or neural network compression such
as pruning [81]. In our application, i.e., fashion retrieval, we
can accelerate it by predicting the query category and filtering
out gallery clothing with unrelated tags before computing their
similarities.

4 FINDFASHION

We build a new benchmark named FindFashion by revisiting the
publicly available datasets. i.e., Street2Shop [2], and DeepFash-
ion [3]. We label 3 attributes (i.e., occlusions, views, and cropping)
which mostly affect clothes retrieval performance. According to
the attributes of the query, we divide the benchmark into 4 subsets
with different difficulty levels. i.e., Easy, Hard-Cropping, Hard-
Occlusion, and Hard-View.

We adopt the same evaluation measure, i.e., top-k accuracy, to
evaluate the performance as in [2], [3].

Data collection and cleaning. We first merged the two exist-
ing datasets (i.e., Street2Shop [2], DeepFashion [3]), and formed a
large dataset containing 382,230 image pairs and 565,041 images,
and then we asked the annotators to screen out the image pairs
that are clearly not of the same clothing.

Annotations. Gallery images from Street2Shop have no cloth-
ing bounding boxes, we first train a Faster RCNN [14] detec-
tor over DeepFashion to detect their bounding boxes, and then
manually correct them. We annotate three attributes (i.e., views,
occlusions and cropping) for all images. For views, we labeled
each clothes images as front, side, or back. Clothing with the
yaw angle in [−45◦, 45◦] is labeled as front, those with yaw
angle in (45◦, 135◦) or (−135◦,−45◦) is labeled as side while
[135◦, 225◦] as back. For occlusions, clothing with more than
30% occluded by other things such as other clothes, mobile
phone or belt is labeled as occluded otherwise as un-occluded.
For cropping, clothing with more than 30% cropped is labeled as
cropped otherwise as un-cropped.

Images in FindFahsion are of large variance in terms of views,
cropping, and occlusions. 8% of images are cropped. 3% of them

are occluded. Front view, side view, and back view account for
74%, 20%, and 6% respectively.

Evaluation protocol. As done in [3], we report top-k accuracy
to evaluate the retrieval performance. It reflects the quality of the
results of a search engine as they would be visually inspected
by a user. Four evaluation setups of different difficulty levels are
defined according to the query attribute while keeping the gallery
unchanged in the test set:

(1) Easy (E), queries are captured from the front view without
cropping or occlusion.

(2) Hard-Cropping (HC), queries are with cropping.
(3) Hard-Occlusion (HO), queries are occluded.
(4) Hard-View (HV), queries are of non-frontal view. Namely,

side or back view.
We do not split training dataset according to the above four

evaluation setups as we found using maximum training data can
achieve better results in all the setups. The detailed statistics of
our evaluation protocols are listed in Table 3.

5 EXPERIMENTS

5.1 Implementation Details

Our implementation on customer-to-shop clothing retrieval fol-
lows the practice in [3]. We train our models with PyTorch.
We perform standard data augmentation with random horizontal
flipping. All cropped images are resized to 224 × 224 before
being fed into the networks. Optimization is performed using
synchronous SGD with momentum 0.9, and weight decay 0.0005
on servers with 8 GPUs. The initial learning rate is set to 0.01
and decreased by a factor of 10 every 20 epochs. All compared
models including ours, are trained using the same training set for
60 epochs. Following previous works [2], [3], [17], the evaluation
metric is top-k accuracy.

We set the batch size to 64 during training. Each batch consists
of 32 clothing with 2 images per clothes. The query and gallery
pairs of the same clothing construct positive training samples
while other combinations negative ones.

In the local feature extraction module, we have a total of
7 scales including the global scale (i.e., L = 7). The whole
spatial window of images is divided into 1 × 1, 1 × 2, 2 × 1,
2 × 2, 1 × 3, 3 × 1 and 3 × 3 from scales 1 to 7, respectively.
In the similarity reasoning module, we use three (i.e., T = 3)
graph convolution layers with channel number C

′
set to 128. The

projection dimension (i.e., D) is set to 512. The feature extractor
is initialized with its pre-trained model on ImageNet while the
similarity computation module and the similarity reasoning mod-
ule are randomly initialized as in [82]. For fair comparison, we
use GoogleNet [78] as backbone on the DeepFashion, Street2Shop
and FindFashion datasets, and ResNet-50 [13] as backbone on the
DeepFashion2 dataset following [17].

As shown in Figure 5, we setNl = 5 when scale l is 1×2, 2×
1 and 2×2, andNl = 12 when scale l is 1×3, 3×1 and 3×3. The
weights of all convolutional layers in adaptive window pooling are
initialized as with [82]. Since the output of vertex prediction unit
represents the adaptive spatial windows, we stabilize the training
process following [62]. Specifically, the weights in the last fully-
connected layer of the vertex prediction unit, are initialized to
zeros, and bias is set to the values so that the predicted vertices
are equally distributed and identical to their corresponding target
vertices in Vt

l .
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Methods Top-1 Top-20 Top-50
FashionNet [3] 7.0 18.8 22.8

Triplet [15] 10.0 37.0 49.9
VAM+Nonshared [15] 11.3 38.8 51.5

VAM+Product [15] 13.4 43.6 56.7
VAM+ImgDrop [15] 13.7 43.9 56.9
DREML(192,48) [60] 18.6 51.0 59.1

KPM [16] 21.3 54.1 65.2
GRNet w/o AWP 25.7 64.4 75.0

GRNet 26.8 65.6 75.2

TABLE 4: Comparison with state-of-the-art methods on Deep-
Fashion consumer-to-shop benchmark [3]. GRNet w/o AWP indi-
cates GRNet without adaptive window pooling.

Method Tops Dresses Skirts Pants Outerwear
Kiapour et al. [2] 38.1 37.1 54.6 29.2 21.0

VAM+ImgDrop [15] 52.3 62.1 70.9 – –
Trip. [15] 44.9 56.0 69.0 – –

Trip.+Partial [15] 47.0 58.3 72.3 – –
GRNet w/o AWP 58.3 64.2 72.5 48.5 38.6

GRNet 58.6 64.5 72.1 49.4 39.4

TABLE 5: Comparison with state-of-the-art methods on
Street2Shop [2] in terms of top-20 accuracy. GRNet w/o AWP
indicates GRNet without adaptive window pooling.

5.2 Comparison with State-of-the-art Methods
Results on DeepFashion. Table 4 compares the proposed GRNet
with state-of-the-art methods, including FashionNet [3], triplet-
based metric learning approach, and Visual Attention Model
(VAM) and its variants (VAM+ImgDrop, VAM+Product, and
VAM+Nonshared) [15], on DeepFashion [3]. Except FashionNet,
all counterparts use the same backbone GoogleNet [78]. The
proposed GRNet outperforms the existing methods with an im-
pressive margin. Specifically, it obtains an accuracy of 26.8, 65.6
and 75.2, and absolutely improves the best ever reported results
(VAM+Product) by 13%, 22% and 19% respectively. Notably,
VAM [15] uses an attention sub-network which needs clothes
segmentation annotations for training, while our GRNet is trained
with only query-gallery image pairs, thus it is more practical. We
also compare GRNet with recent DREML [60], which achieves
state-of-the-art performance on multiple general metric learning
benchmarks, including Inshop [3]. We train the DREML model
on DeepFashion training set using its open source code with
192 recommended meta classes and 48 ensemble models, as in
Table 2 of DREML [60]. Our GRNet is remarkably superior than
DREML although DREML employs 48 models for ensembles.
The above previous works aim to learn a more discriminative
features representation for a single image relying on training with
detection and landmark [3], attention mask based on clothing
segmentation [15], and network ensemble [60]. Our GRNet out-
performs the performance by learning similarities between a query
and a gallery using similarity reasoning between local and global
similarity at different scales. Moreover, we also compare GRNet
with KPM [16], which achieves state-of-the-art performance on
multiple person re-identification benchmarks relying on compar-
ing similarity between a query and a gallery using kronechker-
product to match the feature maps. Again, our GRNet outperforms
KPM remarkably, which demonstrates the effectiveness of our
GRNet. Further, it has been shown that adaptive window pooling
improves the top-1 accuracy of GRNet by 1.1%.

Results on Street2Shop. We compare the proposed GRNet
with state-of-the-art customer-to-shop clothes retrieval methods

Methods Top-1 Top-5 Top-10 Top-15 Top-20
class [17] 7.9 19.8 27.3 32.9 36.6
pose [17] 18.2 32.6 41.6 46.9 51.0

class + pose [17] 19.2 34.5 43.5 48.8 52.4
GRNet w/o AWP 25.6 40.1 50.3 55.7 58.5

GRNet 26.7 41.2 51.0 56.9 60.1

TABLE 6: Comparison with state-of-the-art fashion retrieval
methods on the DeepFashion2 [17].

on Street2Shop dataset [2] in Table 5. It has been shown that
it outperform performance to state-of-the-art methods relying on
attention mask [15]. It has been shown that it achieves the best
results on the tops, dresses, skirts, pants and outerwear categories
of Street2Shop. Particularly, it absolutely improves the best ever
reported results by 11.6% and 6.2% for tops and dresses categories
respectively. Agian, we can observe that adaptive window pooling
can improve the retrieval performance of GRNet.

Results on DeepFashion2. We also evaluate the proposed GR-
Net on the recent challenging DeepFashion2 [17] retrieval bench-
mark with 292k images and 487k pairs, of which 192k/33k/67k
images and 337k/50k/100k pairs are for training, validation and
testing, respectively. Previous work [17] improves the performance
by training with the supervision of landmarks (i.e., “pose”) and
category labels (i.e., “class”). As shown in Table 6, we clearly
observe the advantage of the GRNet with or without adaptive
window pooling. For fair comparison, our method employs the
same feature extractor as [17]. Our proposed GRNet achieves
the best results on this challenging dataset with 7.5%, and 7.7%
absolute improvement in terms of top-1 and top-20 accuracies
respectively.

Results on FindFashion. We evaluate the proposed GRNet
on our annotated benchmark FindFashion with four evaluation
protocols. Namely, Easy, Hard-View, Hard-Cropping, and Hard-
Occlusion. We also compare it with DREML [60], KPM [16]
and our baseline in Table 7. We utilize the siamese-structure with
the classification loss for the global similarity as our baseline.
Specifically on FindFashion, our GRNet improves the results of
the top-20 accuracy up to 65.9 on Easy, 58.5 on Hard-View, 36.2
on Hard-Occlusion and 49.2 on Hard-Cropping. Comparing with
the results of KPM [16] which uses the same backbone as ours,
GRNet acquires more improvement on the evaluation protocols of
Easy, Hard-View, Hard-Occlusion and Hard-Cropping. It demon-
strates the proposed method’s superiority and capability to take
full advantages of different scales information to boost the retrieval
performance.

We further enlarge the FindFashion benchmark by merging
the recently released dataset, DeepFashion2 [17]. DeepFashion2
annotates the attributes of occlusion, zoom-in, and viewpoint,
thus we transform its medium and heavy occlusion labels to our
defined occlusion ones, and its medium and large zoom-in labels
to our defined cropping ones. We name this kind of extended
FindFashion by FindFashion-Ext. It has 125863, 4920, 15883, and
47161 validation pairs, and 41580, 2266, 6021, and 13253 test
pairs with the Easy, Hard-Cropping, Hard-Occlusion and Hard-
View evaluation setup respectively. As shown in Table 8, GRNet
with or without adaptive window pooling consistently outperforms
its counterparts such as siamese network, DREML, and KPM.

In Table 7 and 8, we have observed that GRNet performs worst
on hard-occlusion, and best on hard-view among three non-easy
setups. We believe the underlying reasons are as follows: 1) For
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Methods Easy Hard-View Hard-Occlusion Hard-Cropping
Top-1 Top-20 Top-50 Top-1 Top-20 Top-50 Top-1 Top-20 Top-50 Top-1 Top-20 Top-50

Baseline 16.9 53.6 67.6 10.4 37.8 53.2 4.5 25.3 35.8 7.3 35.4 49.9
DREML(192,48) [60] 20.7 54.2 68.2 17.2 44.3 54.0 6.3 31.3 43.8 10.6 43.4 55.2

KPM [16] 22.9 56.2 69.2 18.3 45.8 55.8 5.8 25.5 35.4 9.7 34.8 46.7
GRNet w/o AWP 27.1 65.1 75.2 23.3 57.9 69.6 7.8 35.0 45.0 14.9 48.4 61.1

GRNet 28.0 65.9 75.2 23.9 58.5 70.3 8.5 36.2 45.8 15.8 49.2 61.9

TABLE 7: Comparison with state-of-the-art methods on FindFashion.

Methods Easy Hard-View Hard-Occlusion Hard-Cropping
Top-1 Top-20 Top-50 Top-1 Top-20 Top-50 Top-1 Top-20 Top-50 Top-1 Top-20 Top-50

Baseline 14.2 46.1 53.0 8.9 34.5 45.6 4.6 18.6 28.2 8.8 28.5 41.5
DREML(192,48) [60] 17.0 45.1 56.5 14.0 39.6 47.8 7.8 24.7 33.7 9.8 32.6 44.6

KPM [16] 19.4 47.3 57.1 14.5 41.4 49.4 7.2 27.0 32.8 10.2 30.6 42.2
GRNet w/o AWP 22.3 55.3 62.3 17.8 47.6 55.5 8.3 28.6 38.1 12.9 39.8 50.6

GRNet 22.6 56.1 62.8 18.1 48.2 55.8 9.4 29.2 38.9 13.5 40.4 51.3

TABLE 8: Comparison with state-of-the-art methods on FindFashion-Ext.

# Local similarity Intra-scale connection Inter-scale connection Accuracy
1× 2 2× 1 2× 2 3× 1 1× 3 3× 3 top−1 top−20 top−50

1 - - - - - - - - 14.06 47.60 60.62
2 X X X - - - X X 22.60 62.71 73.25
3 - - - X X X X X 23.96 64.48 74.32
4 X X X X X X - - 24.48 63.85 74.17
5 X X X X X X - X 24.79 64.17 74.27
6 X X X X X X X - 24.58 63.85 73.44
7 X X X X X X X X 25.73 64.38 75.00

TABLE 9: Ablation experiments of GRNet on DeepFashion [3].

hard-view setup, the queries with side view account for about 77%
and those with back view account for about 23% only as described
in Section 4. As images with side view and those with front
views have much overlap, thus hard-view setup is one task with
moderate difficulty, as shown in Figure 7 (a). 2) For hard-cropping
setup, most of cropped regions are marginal parts of clothes with
little discriminative information, and discriminative regions might
be kept, as shown in Figure 7 (b). 3) For hard-occlusion setup,
most of discriminative regions are occluded, which results in great
difficulty for fashion retrieval, as shown in Figure 7 (c).

(c)

(b)

(a)

Fig. 7: Some examples of query images in the setting of hard-view
(a), hard-cropping (b) and hard-occlusion (c), respectively.

5.3 Ablation Study

We investigate the effectiveness of each component in the pro-
posed GRNet by conducting the following ablation studies on
the DeepFashion dataset [3], shown in Table 9. For simplicity,

we perform ablation experiments with GRNet without adaptive
window sampling except otherwise specified.

Graph reasoning. To validate the effectiveness of graph
reasoning, we utilize a GRNet without graph reasoning as our
baseline(#1), which computes the global similarity between global
features. Comparing #1 and #7, our graph reasoning acquires
11.6% improvement on the top-1 accuracy.

Inter-scale connections. Comparing #6 and #7, it can be ob-
served that the proposed GRNet can achieve 1.15% performance
gain on the top-1 accuracy by adding the inter-scale connections
(Noted that #6 and #4 retain the connections between the global
similarity and the local similarities but remove the connections
between different scales. In other words, #6 and #4 just add the
connections between the global similarity and the local similarities
on the baseline #1).

Intra-scale connections. As reported in Table 9, by propa-
gating similarities at the same scale, our intra-scale connections
acquire 0.9% improvement on the top-1 accuracy (#5 vs #7).
It shows that the local similarities are also refined by their
interactions at the same scale.

Multi-scale similarities. Comparing #1, #2, #3 and # 7, we
observe that the performance is consistently improved when using
more scale similarities. Specifically, the accuracy is improved from
14%, 47% and 60% to 22%, 62% and 73% at top-1, top-20, and
top-50 after adding 2 × 1, 1 × 2, and 2 × 2. They are improved
slightly by further adding 1 × 3, 3 × 1 and 3 × 3 similarities.
Moreover, we compare the results of different scale levels of local
similarity. Comparing #2 and #3, the fine scale brings very subtle
improvement. The result shows that the multi-scale similarities
can enhance the global similarity representation.

Number of graph convolution layers. We conduct experi-
ments with different numbers of graph convolutional layers. The
top-1 accuracy increases from 16.8%, 22.8%, to 25.7% when
the number of graph convolutional layer is set to 1, 2, and 3.
We observe a performance drop if the layer number is increased
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Training set # ins Easy Hard-View Hard-Occlusion Hard-Cropping
top-1 top-20 top-1 top-20 top-1 top-20 top-1 top-20

All 109810 27.1 65.1 23.3 57.9 7.8 35.0 14.9 48.4
Easy 70715 26.4 65.0 20.4 54.2 6.3 34.3 10.0 38.3

Non-front 26825 18.6 54.4 14.7 48.0 5.0 30.2 9.7 38.6
Occlusion 3991 6.4 28.6 4.2 23.3 2.0 11.7 2.3 17.9
Cropping 8279 11.0 41.2 7.6 33.8 2.3 19.4 6.0 32.5

TABLE 10: Comparison between GRNets trained on different training subsets of FindFashion in terms of top-1 and top-20 accuracy.
# ins indicates the number of training query instances.

Methods Inference time (s/query img) Accuracy
Features extraction Similarity computation Total Top-1 Top-20 Top-50

Euclidean distance 0.0070 0.9226 0.9296 12.5 43.5 50.4
DREML (192,48) [60] 0.3360 0.9346 1.2706 15.0 42.4 54.2
KPM [16] + top-500 0.0070 1.0051 1.0121 17.1 45.0 55.5

GRNet w/o AWP + top-500 0.0070 1.0317 1.0387 20.4 53.8 59.5
GRNet + top-500 0.0070 1.0753 1.0823 20.6 54.2 59.6

TABLE 11: Comparison between Our GRNet and triplet-based method in terms of running time and accuracy on FindFashion-Ext.

Projection dim. D Channel num. C
′ Accuracy

Top-1 Top-20 Top-50
512 128 25.73 64.38 75.00
512 256 25.52 64.50 74.43
512 512 25.92 64.75 75.54
256 128 24.06 63.02 73.33
256 256 25.10 64.48 74.17
128 128 24.69 63.64 74.38

TABLE 12: Impacts of Dimensions of GRNet w/o AWP on the
DeepFashion [3].

Methods FLOPs Parameters
Euclidean distance 1.586G 5.974M

Basesline 1.585G 5.978M
DREML(192,48) [60] 76.074G 291.177M

KPM [16] 1.595G 5.979M
GRNet w/o AWP 1.763G 6.696M

GRNet 1.776G 7.099M

TABLE 13: The computational cost of our GRNet and other state-
of-the-art methods. FLOPs indicates the number of floating point
operations, which contains the operations of the features extractor
and the similarity computation.

further due to over-fitting. Thus, we fix the number of graph
convolutional layers to 3 , which achieves the best performance.

Projection dimension and channel number in graph CNN.
Table 12 evaluates GRNet with different projection dimensions
D and channel numbers C

′
. It has been observed that GRNet is

insensitive to projection dimension and channel number. Except
D = 128, there is no obvious performance drop. We fix D =
512 and channel number C

′
to 128 in all our experiments except

otherwise noted.
Adaptive window pooling. Table 4, 5 6, and 7 have been

shown that adaptive window pooling can consistently improve
the performance of fashion retrieval w.r.t. fixed windows. These
results demonstrate the effectiveness of adaptive window pooling.
As visualized in Figure 10, we believe that the improvement is
achieved via the alignment between local features of the query
with those of the gallery and comparing the similar components at
different scales.

Training data of FindFashion. In our proposed benchmark
FindFashion, we do not split the training data according the four
evaluation setups. Table 10 shows the performance of GRNets
when trained on the training subsets with easy, non-front views,

occlusions, or cropping only. As shown in the table, the perfor-
mance drops greatly compared with the model trained on all the
training set. We believe that the reason lies in that the subsets with
easy, non-front views, occlusions, or cropping are with inadequate
training samples. Comparing the performance trained on only
easy subset, the model trained on all the training set obtains the
comparable performance on easy subset but better performance
on other subsets, e.g., non-front views, occlusions and cropping.
It demonstrates that training with hard samples can improve the
generalization ability of model when inference with hard samples.

5.4 Results on Large Scale Fashion Retrieval

To evaluate the time and accuracy of the proposed GRNet in large-
scale scenarios, we conduct one initial search with the global
average-pooled feature-based Euclidean distance, which returns
the top-500 clothes, and then re-rank the initial short list via
GRNet on the largest benchmark, FindFashion-Ext. To better
simulate the large-scale scenarios, we use the whole FindFashion-
Ext in this experiment. All experiments of large-scale scenario run
on a server with 128G RAM using one GTX1080 Ti. Table 11
compares the inference time of GRNet with the initial search,
triplet-based method, and other state-of-the-art methods, such as
KPM [16] and DREML [60]. To fair comparison with KPM [16],
which also computes similarity between a query and a gallery,
we report the time of KPM with the initial search. It has been
shown that GRNet w/o AWP greatly outperforms its competitor
triplet-based method in terms of accuracy at the cost of 0.11s and
about 12% runtime. It has also shown that our lightweight adaptive
window pooling can further improve the accuracy of GRNet at
the cost of 0.04s and about 4% runtime overhead, which could
be negligible. Thus, our proposed GRNet with initial search can
achieve a better performance with an acceptable cost of time on
large-scale scenarios.

Besides the inference time, we also report the number of
parameters and computational complexity in terms of FLOPs,
as shown in Table 13. Except for the DREML [60] ensembling
48 models, the parameters and FLOPs of other methods are
comparable. Compared with Euclidean distance and baseline, our
graph reasoning network and adaptive window pooling cost more
0.722M parameters with 0.177G FLOPs and 0.403M parameters
with 0.013G FLOPs respectively. Though a different graph is built
for each pair of images, the additional parameters and FLOPs
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Fig. 8: Visualization of important regions in the query and the gallery images. Each 2 × 2 images in one rectangle show one query-
gallery image pair and their corresponding highlights, in which the top-left, the top-right, the bottom-left, and the bottom-right are
the query, the query highlights, the gallery, and the gallery highlights respectively. Query 1 and 3 are occluded by hands; query 2 is
occluded by trousers; query 4 is side view while its gallery front; query 5 is cropped.

Before 
Reasoning

After
Reasoning

Before 
Reasoning

After
Reasoning

Fig. 9: Examples of the up-weighted nodes in our similarity
pyramid graph. Each node represents one similarity of the local
patch (indicated by red rectangles) pair from the query (the top
row) and the gallery (the bottom row). Each 2 × 2 images in
one black rectangle show one query-gallery image pair and their
up-weighted local patch pairs, where the left column shows the
most important node before the similarity reasoning and the right
shows it after the similarity propagation. GRNet can up-weight
the similarity between aligned salient clothing components (e.g.,
logo) after graph reasoning.

could be negligible comparing with those of features extractors,
such as GoogleNet (5.974M parameters and 1.586G FLOPs) and
ResNet-50 (25.56M parameters and 4.14G FLOPs).

5.5 Visualization

To investigate why the GRNet works effectively, we firstly analysis
the GRNet without adaptive window pooling to investigate the
effectiveness of graph reasoning. We employ Grad-CAM [83]
to visualize the important regions in the query and the gallery
images for predicting whether they belong to the same clothing
in Figure 8. It has been shown that GRNet automatically focuses
on local discriminative regions (e.g., scarf, and logo ) and shared
regions which can be observed in both the query and the gallery
while ignoring non-discriminative regions (e.g., non-texture re-
gions), occlusions (e.g., hand) or unique regions which can be
observed only on one side due to different views or cropping.
We visualize the similarity node which contributes most to the
final classification by selecting the one whose edge outgoing to

the global similarity node has the largest weight, as shown in
Figure 9. It has been shown that our GRNet can focus on aligned
salient clothing components (e.g., logo).

To investigate why the adaptive window pooling improves
performance, we visualize the rectified query in Figure 10. Each
row is a query-gallery image pair with predicted vertex for query
image at different scales, where except for the last row is a negative
pair, the other rows are positive pairs. It has been shown that
the adaptive window pooling can locate the representative regions
or discriminative components by predicting vertices according to
the gallery at different scales. Even without direct supervision
of target windows, the vertex prediction unit can learn to place
the vertex around the regions which are similarity to galleries
or discriminative at same scale. Thus the adaptive windows in
the query are aligned to the same scale windows in the gallery.
Moreover, in negative pairs, the adaptive window pooling still
learns to find the similarity components based on gallery, or nearly
predict the default windows to distinguish the pair whether the
same or not.

We present qualitative retrieval results on the DeepFashion
dataset [3] and the Street2Shop dataset [2] in Figure 12 and
Figure 13, respectively. Benefiting from the Graph Reasoning on
the similarity pyramid, the global similarity is effectively refined
by multi-scale local similarities. Furthermore, we also show some
representative negative results in Figure 11. We have observed
that our method might fail when the query can be differentiate
from negative galleries with very fine-grained features only (the
first row) or has no discriminative features (the second, the third,
and the bottom rows). Particularly, for the first row, the query is
a T-shirt with text logo. Our method only retrieves clothes with
similar logo, but can not recognize the text to retrieve the clothing
with the same text logo. Comparing with the second row in the
Figure 12, our method are strong in retrieving clothing with similar
local regions, but difficult to distinguish the similar regions with
different texts.

6 CONCLUSIONS

In this paper, we focus on a real-world application task of
customer-to-shop clothing retrieval and have proposed a Graph
Reasoning Network (GRNet). The proposed GRNet first repre-
sents the multi-scale regional similarities and their relationships as
a graph and then performs graph CNN based reasoning over the
graph to adaptively adjust both the local and global similarities.
Further, we propose the adaptive window pooling module to align
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Gallery Scale: 1 × 2 Scale: 2 × 1 Scale: 2 × 2 Scale: 1 × 3 Scale: 3 × 1 Scale: 3 × 3

Fig. 10: Visualization of the predicted adaptive pooling windows of query images at different scales. Each row is a pair of query-gallery
images. The first four rows are positive pairs while the last row negative pair. In each row, the first column shows the gallery image
while other columns the query images with predicted adaptive pooling windows at different scales superposing on them. The blue round
points are predicted by vertex prediction unit while the red square points are fixed for all scales (best viewed in color).

queries with galleries. GRNet achieves more precise matching
of salient clothing components through information propagation
among nodes of similarities. To facilitate future research, we
have also introduced a new benchmark called FindFashion, which
contains rich annotations of clothing including bounding boxes,
views, occlusions, and cropping. We also provide a deeper anal-
ysis on the experimental results to explain why hard-occlusion
performs worst on the non-easy setting. Moreover, we extend
FindFashion with the recent released dataset DeepFashion2 to
conduct large scale experiments. To facilitate the application of
real scenarios, which has large-scale images and requires efficient
search, we propose a large-scale fashion retrieval system to accel-
erate the search process. Extensive experimental results show that
our proposed method obtains new state-of-the-art results on both
the existing datasets and FindFashion.
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Fig. 11: Representative negative results on the Deepfashion [3].
We show the top 5 most similar images to the query image.
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Fig. 12: Qualitative results on the Deepfashion [3]. We show the
top 5 most similar images to the query image. Correct results are
highlighted in green.
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Fig. 13: Qualitative results on the Street2Shop [2]. We show the
top 5 most similar images to the query image. Correct results are
highlighted in green.
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