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Abstract

As an indispensable component, Batch Normalization (BN) has successfully im-
proved the training of deep neural networks (DNNs) with mini-batches, by normal-
izing the distribution of the internal representation for each hidden layer. However,
the effectiveness of BN would diminish with the scenario of micro-batch (e.g. less
than 4 samples in a mini-batch), since the estimated statistics in a mini-batch are
not reliable with insufficient samples. This limits BN’s room in training larger
models on segmentation, detection, and video-related problems, which require
small batches constrained by memory consumption. In this paper, we present a
novel normalization method, called Kalman Normalization (KN), for improving
and accelerating the training of DNNs, particularly under the context of micro-
batches. Specifically, unlike the existing solutions treating each hidden layer as
an isolated system, KN treats all the layers in a network as a whole system, and
estimates the statistics of a certain layer by considering the distributions of all its
preceding layers, mimicking the merits of Kalman Filtering. On ResNet50 trained
in ImageNet, KN has 3.4% lower error than its BN counterpart when using a batch
size of 4; Even when using typical batch sizes, KN still maintains an advantage
over BN while other BN variants suffer a performance degradation. Moreover,
KN can be naturally generalized to many existing normalization variants to obtain
gains, e.g.equipping Group Normalization [34] with Group Kalman Normalization
(GKN). KN can outperform BN and its variants for large scale object detection and
segmentation task in COCO 2017.

1 Introduction

Batch Normalization (BN) [13] has recently become a standard and crucial component for improving
the training of deep neural networks (DNNs), which is successfully employed to harness several
state-of-the-art architectures[8, 27]. In the training and inference of DNNs, BN normalizes the
internal representations of each hidden layer by subtracting the mean and dividing the standard
deviation, as illustrated in Fig. 1 (a). As pointed out in [13], BN enables using larger learning rate in
training, leading to faster convergence.

Although the significance of BN has been demonstrated in many previous works, its drawback
cannot be neglected, i.e.its effectiveness diminishing when small mini-batch is presented in training.
Consider a DNN consisting of a number of layers from bottom to top. In the traditional BN, the
∗Corresponding author: Liang Lin.
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normalization step seeks to eliminate the change in the distributions of its internal layers, by reducing
their internal covariant shifts. Prior to normalizing the distribution of a layer, BN first estimates its
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Figure 1: (a) illustrates the distribution estimation in
the conventional BN, where the mini-batch mean µk

and variance Σk, are estimated based on the currently
observed mini-batch at the k-th layer. X and X̂ denote
the internal representation before and after normaliza-
tion. In (b), the proposed KN provides more accurate
distribution estimation of the k-th layer, by aggregating
the statistics of the preceding (k-1)-th layer.

statistics, including the means and variances.
However, it is impractically expected that the s-
tatistics of the internal layers can be pre-estimated
on the training set, as the representations of the
internal layers keep changing after the network
parameters have been updated in each training
step. Hence, BN handles this issue by the fol-
lowing schemes. i) During the model training, it
approximates the population statistics by using
the batch sample statistics in a mini-batch. ii)
It retains the moving average statistics in each
training iteration, and employs them during the
inference.

However, BN has a limitation, which is limited
by the memory capacity of computing platforms
(e.g.GPUs), especially when the network size and image size are large. In this case, the mini-batch
size is not sufficient to approximate the statistics, making them had bias and noise. And the errors
would be amplified when the network becomes deeper, degenerating the quality of the trained model.
Negative effects exist also in the inference, where the normalization is applied for each testing sample.
Furthermore, in the BN mechanism, the distribution of a certain layer could vary along with the
training iteration, which limits the stability of the convergence of the model.

The demanding on batch size limits the performance of many computer vision task, such as detection
[7, 9], segmentation [3], video recognition [28], and other high-level systems built upon them [32, 31].
For instance, limited by the heavy burden of model and the high resolution of images, the Mask
RCNN frameworks [9] can only allow an extremely micro batch (e.g.1 or 2), which disable the
function of BN as discussed above. Compromisingly, a common way is to ’freeze’ the BN, in which
BN degrades into a linear layer because the statistics it uses are fixed as constants.

In this paper, we present a new normalization method, called Kalman Normalization (KN), for
improving and accelerating training of DNNs particularly under the context of micro-batches. KN
advances the existing solutions by achieving more accurate estimation of the statistics (means and
variances) of the internal representations in DNNs. Unlike BN where the statistics were estimated by
only measuring the mini-batches within a certain layer, i.e.they considered each layer in the network
as an isolated sub-system, KN shows that the estimated statistics have strong correlations among
the sequential layers. And the estimations can be more accurate by jointly considering its preceding
layers in the network, as illustrated in Fig. 1 (b). By analogy, the proposed estimation method shares
merits compared to the Kalman filtering process [14]. KN performs two steps in an iterative way. In
the first step, KN estimates the statistics of the current layer conditioned on the estimations of the
previous layer. In the second step, these estimations are combined with the observed batch sample
means and variances calculated within a mini-batch.

This paper makes the following contributions. 1) We propose an intuitive yet effective normalization
method, offering a promise of improving and accelerating the neural network training. 2) The
proposed method enables training networks with mini-batches of very small sizes (e.g. less than
4 examples), and the resulting models perform substantially better than those using the existing
BN methods. This specifically makes our method advantageous in several memory-consuming
problems such as large scale object detection and segmentation task in COCO 2017. 3) On ImageNet
classification task, the experiments show that the recent advanced networks can be strengthened by
our method, and the trained models improve the leading results by using less than 60% training steps.
And the computational complexity of KN increases only 0.015× compared to that of BN, leading to
a marginal additional computation.

2 Related Work
Whitening. Decorrelating and whitening the input data [16] has been demonstrated to speed up
training of DNNs. Some following methods [33, 22, 21] were proposed to whiten activations by using
sampled training data or performing whitening every thousands iterations to reduce computation.
Nevertheless, these operations would lead to model blowing up according to [13], because of
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instability of training. Recently, the Whitened Neural Network [5] and its generalizations [18, 17, 11]
presented practical implementations to whiten the internal representation of each hidden layer, and
drew the connections between whitened networks and natural gradient descent. Although these
approaches had theoretical guarantee and achieved promising results by reducing the computational
complexity of the Singular Value Decomposition (SVD) in whitening, their computational costs
are still not neglectable, especially when training a DNN with plenty of convolutional layers on a
large-scale dataset (e.g.ImageNet), as many recent advanced deep architectures did.

Standardization. To address the above issues, instead of whitening, Ioffe et al.[13] proposed to
normalize the neurons of each hidden layer independently, where the batch normalization (BN) is
calculated by using mini-batch statistics. The extension [4] adapted BN to recurrent neural networks
by using a re-parameterization of LSTM. In spite of their successes, the heavy dependence of the
activations in the entire batch causes some drawbacks to these methods. For example, when the mini-
batch size is small, the batch statistics are unreliable. Hence, several works [25, 2, 1, 26, 10, 34] have
been proposed to alleviate the mini-batch dependence. Normalization propagation [1] attempted to
normalize the propagation of the network by using a careful analysis of the nonlinearities, such as the
rectified linear units. Layer normalization [2], Instance Normalization [29], and Group Normalization
(GN) [34] standardized the hidden layer activations, which are invariant to feature shifting and scaling
of per training sample. Fixed normalization [26] provided an alternative solution, which employed
a separate and fixed mini-batch to compute the normalization parameters. However, all of these
methods estimated the statistics of the hidden layers separately, whereas KN treats the entire network
as a whole to achieve better estimations. Moreover, KN can be naturally applied to many existing
normalization variants to obtain gains, e.g.equipping Group Normalization (GN) with Group Kalman
Normalization (GKN)

3 The Proposed Approach
Overview. Here we introduce some necessary notations that will be used throughout this paper. Let
xk be the feature vector of a hidden neuron in the k-th hidden layer of a DNN, such as a pixel in the
hidden convolutional layer of a CNN. BN normalizes the values of xk by using a mini-batch of m
samples, B = {xk1 , xk2 , ..., xkm}. The mean and covariance of xk are approximated by

x̄k ← 1

m

m∑
i=1

xki , Sk ← 1

m

m∑
i=1

(xki − x̄k)(xki − x̄k)T . (1)

They are adopted to normalize xk. We have x̂k ← xk
i−x̄

k

√
diag(Sk)

, where diag(·) denotes the diagonal

entries of a matrix, i.e.the variances of xk. Then, the normalized representation is scaled and shifted
to preserve the modeling capacity of the network, yk ← γx̂k + β, where γ and β are parameters that
are opmizted in training. However, a mini-batch with moderately large size is required to estimate
the statistics in BN. It is compelling to explore better estimations of the distribution in a DNN to
accelerate training.

3.1 DNN as Kalman Filtering Process
Assume that the true values of the hidden neurons in the k-th layer can be represented by the variable
xk, which is approximated by using the values in the previous layer xk−1. We have

xk = Akxk−1 + uk, (2)

where Ak is a state transition matrix (e.g. convolutional filters) that transforms the states (features) in
the previous layer to the current layer. And uk is a bias following a Gaussian distribution. As the
above true values of xk exist yet not directly accessible, they can be measured by the observation zk
with a bias term vk,

zk = xk + vk, (3)
where zk indicates the observed values of the features in a mini-batch. Then, the estimation of true
value of the k-th layer’s hidden neurons x̂k|k and their variances Σ̂k|k can be easily obtained by a
standard Kalman filtering process:


x̂k|k−1 = Akx̂k−1|k−1,

Σ̂k|k−1 = AkΣ̂k−1|k−1(Ak)T +R,

x̂k|k = f(qk, x̂k|k−1, zk),

Σ̂k|k = g(qk, Σ̂k|k−1, Sk),

(4)
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where x̂k|k−1 and Σ̂k|k−1 are the estimation of true value and the variances of the k-th layer
conditioned on the previous layer, respectively. f(·) and g(·) are two linear combination functions in
the original Kalman filtering process. R is the covariance matrix of the bias uk in Eqn.(2). Sk is the
observed covariance matrix of the mini-batch in the k-th layer. qk is the gain value.

3.2 Kalman Normalization

Eqn. 4 is a Kalman filtering process, in which the true value of the k-th layer’s hidden neurons x̂k|k

and their variances Σ̂k|k are estimated. But in a BN problem the desired quantity to estimate includes
not just the variances, but also the means µ̂k|k. Fortunately, the means can be easily obtained due
to the Kalman filter property. Specifically, we compute expectation on both sides of Eqn.(2) and 3,
i.e.E[xk] = E[Akxk−1 + uk] and E[zk] = E[xk + vk], and have

µ̂k|k−1 = Akµ̂k−1|k−1, E[zk] = xk (5)

where µ̂k−1|k−1 denotes the estimation of mean in the (k-1)-th layer, and µ̂k|k−1 is the estimation of
mean in the k-th layer conditioned on the previous layer. We call µ̂k|k−1 an intermediate estimation
of the layer k, because it is then combined with the mean of observed values to achieve the final
estimation. As shown in Eqn.(6) below, the estimation in the current layer µ̂k|k is computed by
combining the intermediate estimation with a bias term, which represents the error between the mean
of the observed values E[zk] and µ̂k|k−1. Here E[zk] indicates the mean of the observed values and
we have E[zk] = xk in Eqn. 5. And qk is a gain value indicating how much we reply on this bias.

µ̂k|k = µ̂k|k−1 + qk(xk − µ̂k|k−1). (6)

Similarly, the estimations of the covariances can be achieved by calculating Σ̂k|k−1 = Cov(xk −
µ̂k|k−1) and Σ̂k|k = Cov(xk− µ̂k|k), where Cov(·) represents the definition of the covariance matrix.
By introducing pk = 1− qk, and combining the above definitions with Eqn.(5) and (6), we have the
following update rules to estimate the statistics as shown in Eqn.(7).

µ̂k|k−1 = Akµ̂k−1|k−1,
µ̂k|k = pkµ̂k|k−1 + qkx̄k,

Σ̂k|k−1 = AkΣ̂k−1|k−1(Ak)T +R,

Σ̂k|k = pkΣ̂k|k−1 + qkSk,

(7)

where Σ̂k|k−1 and Σ̂k|k denote the intermediate and the final estimations of the covaraince matrixes
in the k-th layer respectively. In the original Kalman Filtering process, the transition matrix Ak,
the covariance matrix R, and the gain value qk are computed from hand-crafted formulations, but
in Eqn.(7) they are all rethought as learnable parameters in a pure data-driven manner for learning
efficiency.

In CNNs, the transition matrix Ak equals to the convolutional filter, but both the mean µ̂k−1|k−1

and the Σ̂k−1|k−1 are vectors. Applying convolution to vectors is impractical. Fortunate-
ly, the Monte-Carlo Sampling Theory [30] provides a solution. Specifically, some data y ∼

Distribution 
Estimation

Normalization Normalization

Distribution 
Estimation

Prediction Update

... ...
, ,

Figure 2: The estimations in the k-th layer (i.e.µ̂k|k and Σ̂k|k) are based on the estimations of the (k-1)-th layer
(i.e.µ̂k−1|k−1 and Σ̂k−1|k−1), where these estimations are updated by combining with the observed statistics of
the k-th layer (i.e.Xk). This process treats the entire DNN as a whole system, different from existing works that
estimated the statistics of each hidden layer independently.
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N(µ̂k−1|k−1, Σ̂k−1|k−1) is first sampled. Then, y is convolved with the transition matrix Ak to
obtain Aky. Finally, the intermediate estimations µ̂k|k−1 and Σ̂k|k−1 are obtained by calculating the
mean and the variance of Aky.

In training of KN, we employ µ̂k|k and Σ̂k|k to normalize the hidden representation. Similar to BN,
KN also retains the moving average statistics to appropriate the population statistics in each training
iteration, and employs them during the inference.

From the above, KN has two unique characteristics that distinguish it from BN. First, it offers a
better estimation of the distribution. In contrast to the existing normalization methods, the depth
information is explicitly exploited in KN. For instance, the prior message of the distribution of the
input image data is leveraged to improve estimation of the second layer’s statistics. On the contrary,
ignoring the sequential dependence of the network flow requires larger batch size. Second, KN offers
a more stable estimation when learning proceeds, where the information flow from prior state to the
current state becomes more stable.

Fig.2 illustrates a diagram of KN. Unlike BN where statistics are computed only within each layer
independently, KN uses messages from all proceeding layers to improve the statistic estimations in
the current layer.

3.3 Generalized Kalman Normalization

KN can also serve as an essential component. It is not specially designed for only BN, it can be
combined with different BN variants. Without loss of generality, we rewrite Eqn. 1 as,

x̄k ← 1

m

∑
g∈Si

xkg , Sk ← 1

m

∑
g∈Si

(xkg − x̄k)(xkg − x̄k)T . (8)

where Si is the set of pixels in which the mean/variance are computed. Specifically, in BN the set
Si is defined as Si = {gC = iC} with iC as the sub-index of i along the channel axis C. Similarly,
in GN [34] Si is defined as Si = {g|gN = iN ,

gC
C/G = iC

C/G}, where G is a hyper-parameter and
N denotes the batch axis. Once obtaining x̄k and Sk, we immediately equip them with Kalman
Normalization using Eqn. 7. Different definitions of Si bring different Kalman Normalization, such
as Batch Kalman Normalization (BKN, or KN by default) and Group Kalman Normalization
(GKN).

3.4 Kalman Normalization Property

Handling micro-batch training. In a convolutional layer, activations of the same feature map at
different locations (pixels) should be normalized in the same way. Therefore, we jointly normalize all
the activations in a mini-batch over all locations (pixels) by following BN. Suppose that a layer has a
mini-batch of n and its feature maps have p pixels, its effective mini-batch to normalization is n× p
rather than only n.

This reveals another benefit of KN. According to Eqn.(7), the mean of the l-th layer can be computed
as µ̂l|l = plAlµ̂l−1|l−1 + qlx̄l. We rewrite it as µ̂l|l = g(µ̂l−1|l−1, x̄l). And µ̂l−1|l−1 can be
further decomposed by using the estimations of in the previous (l-2) layers. Recursively, we have
µ̂l|l = g(µ̂0|0, x̄1, x̄2, ..., x̄l), where µ̂0|0 denotes the mean of the whole dataset. This implies that in
order to compute the statistics of the l-th layer, we achieve it by implicitly using the feature maps of
all layers below, i.e.the effective mini-batch becomes n× (p1 + p2 + ...+ pl) rather than only n× p,
where pl denotes the number of the pixels in the l-th layer’s feature map. In this way we enlarge the
effective batch size to handle the micro-batch training.

Micro-batch training vs data parallelism vs model parallelism. Usually, data parallelism with a
large batch size is still a micro-batch training scenario, since statistical estimation in BN need to
be performed in each single GPU separately. This is different from averaging gradients in SGD:
synchronizing gradients in SGD is cheap, but synchronizing the statistic in BN is expensive. In the
former, all GPUs only need to wait once after each iteration, while in the latter, all GPUs need to wait
at each BN layer. Given a network with 100 BN layers, there will be 100× more communication cost,
making statistics synchronization in BN impractical. Unless otherwise specified, the “batch size” in
the paper refers to mini-batch in a single GPU. For example, typically batch size of 32 samples/GPU
is used to train a ImageNet model. Normalizations are accomplished within each GPU, and the
gradients are aggregated over 8 GPUs to update the network parameters.
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Similarly, model parallelism is also impractical for BN. To enable large-batch training, there are two
ways to parallelize the model. i) The network is split by layer into GPUs. Without losing accuracy,
we should forward-pass the data GPU by GPU, then back-propagate the errors GPU by GPU. This
is inefficient due to the waiting & communicating time . ii) The network is split by channel. By
blocking the information exchange between channels, the accuracy drops. The compromise between
efficiency and accuracy makes model parallelism impractical for BN.

There are many typical memory-consuming scenarios that benefits from micro-batches training, such
as training large-scale wide and deep networks and semantic image segmentation. Video-related
problems (e.g. video detection) and object detection frameworks (e.g. Faster R-CNN [23] and Mask
R-CNN [9]) are more eager for micro-batch, where batch size is typically small (<2) in each GPU.

Comparison with shortcuts in ResNet. Although shortcut connection also incorporates information
from previous layers, KN has two unique characteristics that distinguish it from shortcut connection.
1) KN provides better statistic estimation. In shortcut connection, the informations of previous layer
and current layer are simply summed up. No distribution estimation is performed. 2) In theory KN
can be applied to shortcut connection, because we have received the entire feature map, then we can
easily obtain the mean/variance from the feature map.

4 Experiments

4.1 ImageNet Classification

We first evaluate KN on ImageNet 2012 classification dataset [24] which consists of 1, 000 categories.
The models are trained on the 1.28M training images and evaluated on the 50k validation images. We
examine top-1 accuracy. Our baseline models are three representative networks, including Inceptionv2
[27], ResNet50, and ResNet101 [8]. In the original models, BN is stacked after convolution and
before the ReLU activation [19]. KN is applied by simply replacing BN. We also compare with the
recently proposed BRN [12] and GN [34], which can be applied in a similar manner.

4.1.1 Training with Typical Batch (Batch Size = 32)

Inceptionv2 Iters@73.1% ResNet101 ResNet50

BN 73.1 170k 77.4 76.4

GN – – – 75.9↓0.5

KN 74.0↑0.9 100k 78.3↑0.9 76.8↑0.4

Table 1: ImageNet val top-1 accuracy, batchsize=32.

Table 1 compares the top-1 validation accura-
cies.When reaching 73.1% accuracy for Incep-
tionv2, KN requires 41.2% times fewer steps
than BN (100k vs 170k steps). In particular, In-
ceptionv2+KN achieves an advanced accuracy
of 74.0% when training converged, outperform-
ing the original network [13] by 1.0% . This
improvement is attributed to two reasons. First, by leveraging the messages from the previous layers,
estimation of the statistics is more stable in KN, making training converged faster, especially in the
early stage. Second, this procedure also reduces the internal covariance shift, leading to discriminative
representation learning and hence improving classification accuracy. Similar phenomenon can also
be observed in ResNets. For example, KN achieves 78.3% top-1 accuracy while BN achieves only
77.4% in ResNet101.

Inceptionv2 ResNet101 ResNet50

BN 11.29M 44.55M 25.56M
GN 11.29M 44.55M 25.56M
KN 11.30M 44.60M 25.58M

Table 2: Parameter comparison.

A nonnegligible founding is that when compared to BN
in typical-batch training, KN keeps competitive advantage
(76.8% vs 76.4% in ResNet50) while GN is at a disadvan-
tage (75.9% vs 76.4%). This may be attributed to optimiza-
tion efficiency of BN, upon which KN (i.e.BKN) is built.

Extra Parameters. In fact, KN introduces only 0.1%×
extra parameters, which is negligible. The extra parameters
include the gain value q that is a scalar, as well as the covariance matrix R, which is a diagonal matrix
(the same as number of channels). The parameters of KN exclude the transition matrix A, because A
is a state transition matrix that is shared with the convolutional filter in CNNs. An comparison of
parameter numbers is shown in Table 2.
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BN KN

Speed (examples/sec) 325.74 320.94

Table 3: Computational complexity.

Computation Complexity. Table 3 reports the compu-
tation time of Inceptionv2 with KN compared to that
with BN, in terms of the number of samples processed
per second. For a fair comparison, both methods are
trained in the same computing machine with four Titan-
X GPUs. We observe that BN and KN have similar computational costs. The speed of BN is 325.74
examples/sec, which is 1.015× of the speed of KN.

4.1.2 Training with Micro Batch (Bacth Size = 4 & 1)

Next we evaluate KN when batch size is small by using different settings, e.g.batch size of 1 and 4.

BN BRN GN KN

Option A: using moving mean/var 72.7 73,7 – 76.1
Option B: using batch (online) mean/var 75.0 – 75.8 76.1

Table 4: ImageNet ResNet50 val, batchsize=4.

Batch Size of 4. We employ the baseline
of typical batch size (i.e.32) for compar-
ison. Table 4 reports the results, from
which we have three major observation-
s. First, we obtain an improvement by
replacing BN with KN. For example, in
ResNet50, KN achieves 76.1% top-1 ac-
curacy, outperforming BN and BRN by a large margin (3.4% and 3.4%). Beside, KN is slightly better
than GN (0.3%). This comparison verify the effectiveness of KN in micro-batch training.
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Figure 3: Option A: ImageNet
InceptionV2 val performance using
moving mean/variance.

Second, we also note that under such setting the validation ac-
curacy of all normalization methods are lower than the baseline
that normalized over batch size of 32 (76.8 vs 76.1 for KN), and
training converges slowly. However, BN is significantly worse
compared to the baseline. This indicates that the micro-batch
training problem is better addressed by using KN than BN.

Third, interestingly we find that there is a gain between using
different kinds statistic estimation. In Table 4, we compare t-
wo options including : (A) the population statistics (moving
mean/variance) are used to normalize the layer’s inputs during
inference, and (B) batch sample (online) statistics are used for
normalization during inference. Using online statistics weakens
the superiority of GN over BN. This drives us to re-think the
mechanism of 1-example-batch training (e.g.GN).

Batch Size of 1. We continue to use the above two options. In return, we have two observations
from in Fig. 3 and Table 5. First, in both options KN are significantly better than competitors. For
example, using online statistics (B) KN obtains a 2.11% and 2.75% increase compared to BN and
BRN, respectively.

BN BRN KN

Acc @120k iters 45.88% 45.24% 47.99%

Table 5: Option B: ImageNet InceptionV2
val performance using online mean/variance
at 120k steps, which is not converged.

Second, in comparison, using online statistics (B) is sig-
nificantly better than using population statistics (A) . For
example, BKN obtains a top-1 accuracy of 47.99% using
online statistics (B), while 0.4% using moving means and
variances. Note that this gain is solely due to the usage
of different statistics. We attribute this to two reasons. 1)
All approaches fail to estimate the population statistics for
1-example-batch training. As is discussed in Section 1,
the networks are trained using batch sample statistics, while are tested based on population statistics
appropriated by moving averages. In 1-example-batch training, the information communication never
happens between any two examples. Therefore the moving averages are difficult to represent the
population statistics. One possible solution is to also use the moving averages to normalize the layer
inputs during training, but turns out to be infeasible in [13]. 2) We indeed do not need any population
statistic in the case of 1-example-batch training because it ensures that the activations computed in the
forward pass of training step depend only on a single example, free from the influence of population
statistics. Even in Table 5 KN has a better performance than competitors, improving 2.11% and
2.75% compared to BN and BRN respectively. These results verify the effectiveness of KN.
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4.2 COCO 2017 Object Detection and Segmentation

backbone APbbox APmask

BN* 36.7 32.1
GN 37.7 32.5
KN 37.8 33.1

Table 6: Detection and seg-
mentation ablation results using
Mask RCNN.

To investigate the application of micro-batch training, we use CO-
CO 2017 detection & segmentation benchmark [6]. We evaluate
fine-tuning the models trained on ImageNet [24] for transferring to
detection and segmentation. These computer vision tasks in general
benefit from higher-resolution input, so the batch size tends to be small
in common practice (1 or 2 images/GPU). As a result, BN degrades
into a linear layer y = γ

σ (x−µ) +β where µ and β are pre-computed
from pre-trained model and frozen, e.g.Mask RCNN [9]. We denote
this as BN*, which in fact performs no normalization during finetun-
ing. Another substitute is to use the standard BN, but it turns out to be impractical in [34] because of
inaccurate statistic estimation. Therefore we ignore the standard BN.

We experiment on the Mask RCNN baselines [9] using a ResNet50 conv4 backbone. We replace BN*
with KN during finetuning. The models are trained in the COCO train2017 set and evaluated in the
COCO val2017 set. To accelerate the training, we use the standard fast training setting following the
COCO model zoo. Specifically, the resolution is set as (800, 1333); and we sample 256 boxes for
each image. We use the schedule of 280k training steps. We report the standard COCO metrics of
Average Precision (AP) for bounding box detection (APbbox) and instance segmentation (APmask).

Table 6 shows the comparison of KN vs BN* vs GN. KN improves over BN* by 1.1% box AP
and 1.0% mask AP. This may be contributed to the fact that BN* creates inconsistency between
pre-training and fine-tuning (frozen). We also found GN is 0.6% mask AP worse than KN. Although
GN is also suitable for micro-batch training, its representational power is weaker than KN.

4.3 Analysis on CIFAR10, CIFAR100, and SVHN
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Figure 4: Comparison among
BN, BKN, GN, and GKN on
CIFAR-10 val set, ResNet(n=5)

We conducted more studies on the CIFAR-10 and CIFAR-100 dataset
[15], both of which consist of 50k training images and 10k testing
images in 100 classes and 10 classes, respectively. We also conduct
experiments on SVHN dataset [20], which is a real-world digit image
dataset containing over 600,000 labeled data of 10 categories.

4.3.1 Generalized Kalman Normalization Studies

As is pointed out in Sect. 3.3, there are various Kalman Normaliza-
tions, e.g.BKN and GKN. Next we investigate the gain of Kalman
Normalization mechanism compared with the bare BN and GN on
CIFAR10. We use the standard ResNet for CIFAR10 following [8]
with the setting of n = 5. We conduct the experiments in the context
of micro-batch training, i.e.we use batch size of only 2. The results
are reported in Figure 4, where we have three major observations.
First, both BN and GN benefit from Kalman Normalization mech-
anism. For example, BKN has a gain of 1.5% compared with BN,
verifying the effectiveness of BKN (i.e.KN). Second, the gain of
‘BKN - BN’ is larger than ‘GKN - GN’ (1.5% vs 0.4%). This may
be attributed to optimization efficiency of BN. Third, Although GN has gains over BN on ImageNet
in micrio-batch training, it has no gain on CIFAR10.

4.3.2 Other Ablation Studies
In this section our focus is on the behaviors of extremely small batch size, but not on pushing the
state-of-the-art results, so we use simple architecture summarized in the following table, where a
fully connected layer with 1,000 output channels is omitted.

type conv inception inception inception avg pool
spatial size 16× 16 16× 16 16× 16 16× 16 1× 1

filters 32 256 480 512 512
1×1 64 128 192

1×1/3×3 96, 128 128, 192 96, 208
1×1/5×5 16, 32 32, 96 16, 48
pool/1× 1 32 64 64
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(a)BN's variance gap  (b)KN's variance gap

Figure 5: Visualization of variance gap be-
tween batch sample variance and moving
variance for BN and KN, respectively.

Evidence of more accurate statistic estimations. To
show that KN indeed provides a more accurate statistic
estimation than BN, we present two evidences as follows.
First, direct evidence. When the training stage finished,
we exhaustively forward-propagated all the samples in
CIFAR-10 to obtain their moving statistics and batch sam-
ple statistics. The gaps between batch sample variance and
the moving variance are visualized in Fig. 5 (a) and (b)
for BN and KN, respectively. In Fig. 5 the horizontal axis
represents values of different batches, while vertical axis
represents neurons of different channels. We can observe
values in Fig. 5 (b) are smaller than Fig. 5 (a), indicating that KN provides a more accurate statistic
estimation, which is consistent with Table 4. This reflects the superiority of KN over BN. The
improvement is attributed to two reasons. First, KN enlarges the effective batch size to handle
the micro-batch training by implicitly using the feature maps of all preceding layers (see Sec.3.3).
Therefore it provides a more accurate statistic estimation (i.e.smaller gap between population statistic
and sample statistic). Second, BN treats each hidden layer as an isolated system, the gap between
the population variance and the batch sample variance amplifies as the network becomes deeper.
Differently, KN treats all the layers in a network as a whole system, and estimates the variance of a
certain layer guided by the distributions of its preceding layer. The merits of Kalman Filtering help
eliminate gaps.

using online mean/var using moving mean/var
BN (bs = 2) 90.0 89.4
BN (bs = 128) 90.0 92.1
KN (bs = 2) 90.9 90.9

Table 7: CIFAR-10 val set, bs = batchsize, Inception.

Second, indirect evidence. During inference,
there are two ways to calculate the clas-
sification accuracy, i.e. using the moving
mean/variance or batch mean/variance. Ex-
perimental results in Table 7 show that in KN,
using batch mean/variance achieves the same
accuracy as using moving mean/variance. While in BN there’s a gap between using batch variance
and moving variance. This again proves that KN does provide more accurate estimations.

Inception
CIFAR10 CIFAR100 SVHN

BN (bs = 2) 89.4 63.8 98.06
BRN [12](bs = 2) 90.38 65.72 98.04
WN [25] (bs = 2) 87.83 62 97.92
LN [2] (bs = 2) 77.7 47.02 97.98
BN (bs = 128) 92.1 70.5 98.08
KN (bs = 2) 90.9 67.3 98.16

ResNet32
CIFAR10

GN (bs = 2) 91.3
BN (bs = 2) 91.2
KN (bs = 2) 92.7

ResNet110
GN (bs = 128) 92.6
BN (bs = 128) 93.8
KN (bs = 128) 94.3

Table 8: Comparison with BN variants on CI-
FAR10, CIFAR100 and SVHN, bs = batchsize

Comparison with BN variants. We compare KN
with more BN variants (e.g.Batch Renorm(BRN)
[12], Weigth Norm (WN) [25], Layer Norm (LN) [2]
and Group Norm (GN) [34] ) on CIFAR-10, CIFAR-
100 and SVHN dataset. We have three major findings
in Table 8. First, KN beats BN and its variants by
large margin on these dataset in micro-batch train-
ing. For example, on CIFAR100 KN has a gain of
3.5%, 1.58%, 5.3%, 20.3% and 1.4% when com-
pared with BN, BRN, WN, LN, and GN, respective-
ly. Second, we can observe that the performance of
the micro-batch training (91.0%, batchsize = 2) is
very encouraging compared to that of the typical size
(92.1%, batchsize = 128). Third, different from GN
that is inferior to BN under the context of typically
large-batch training, KN keeps superiority over the
competitors. These comparisons verify the effective-
ness of KN again.

5 Conclusion

This paper presented a novel normalization method, called Kalman Normalization(KN), to normalize
the hidden representation of a deep neural network. Unlike previous methods that normalized each
hidden layer independently, KN treats the entire network as a whole. KN can be naturally generalized
to other existing normalization methods to obtain gains. Extensive experiments suggest that KN is
capable of strengthening several state-of-the-art neural networks by improving their training stability
and convergence speed. More importantly, KN can handle the training with mini-batches of very
small sizes.
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