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Contextualized Trajectory Parsing with
Spatio-temporal Graph
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Abstract—This work investigates how to automatically parse object trajectories in surveillance videos, that aims to jointly solve three
subproblems: i) spatial segmentation, ii) temporal tracking, and iii) object categorization. We present a novel representation spatio-
temporal graph (ST-Graph), in which: i) graph nodes express the motion primitives, each representing a short sequence of small-size
patches over consecutive images; and ii) every two neighbor nodes are linked with either a positive edge or a negative edge to describe
their collaborative or exclusive relationship of belonging to the same object trajectory. Phrasing the trajectory parsing as a graph multi-
coloring problem, we propose a unified probabilistic formulation to integrate various types of context knowledge as informative priors.
An efficient composite cluster sampling algorithm is employed in search of the optimal solution by exploiting both the collaborative and
the exclusive relationships between nodes. The proposed framework is evaluated over challenging videos from public datasets, and
results show that it can achieve state-of-the-art tracking accuracy.

Index Terms—Video Analysis, Visual Tracking, Spatio-temporal Graph, Composite Cluster Sampling
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1 INTRODUCTION

O BJECT tracking has long been an active research topic
in computer vision. Recently, due to the increasing

demands of industrial applications such as surveillance system,
navigation, robotics and sports analysis, significant progress
in object tracking have been made in terms of its scalability
and reliability. However, tracking multiple objects of interests
that move with significant occlusions remains challenging.
Figure 1(a) shows a sequence of input images and Figure 1(b)
shows the corresponding foreground regions (in black) which
are generated by a background subtracting module (Gaussian
Mixture Model based method [17] in this example). In the
figures, the foreground blobs adhere together although they
correlate with different objects of interests. In fact, one object
(e.g. car) may enter into the view of camera with partial
occlusions and never appear completely. Tracking multiple
objects under persistent occlusions requires performing spatial
segmentation for every single image, which give rises to the
task of simultaneous temporal tracking and spatial segmenta-
tion.
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Fig. 1. Trajectory parsing via deferred observations. (a) Three
images from a video sequence, and (b) the corresponding fore-
ground masks. Object trajectories are shown in mask images
where different colors indicate different objects of interest. (c)
The parsed trajectories in perspective view. Each trajectory
consists of a bundle of motion primitives.

In the past literature, Bugeau et al. [7] utilized the graph
cut method to simultaneously track and segment multiple
objects in videos. Zhao et al [45] proposed to segment and
track multiple persons in crowded environments by a unified
Bayesian model. Yu et al. [43] utilized temporal tracking
(based on Gaussian Mixture Models) to assist video fore-
ground/background segmentation. Although great successes
obtained, these methods usually perform segmentation and
tracking in alternation which may get stuck in a local minimum
and requires good initialization to converge. In this work,
we present unified framework for robust trajectory parsing.
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The target is to automatically parse each input video into
a set of object trajectories and obtain their category labels,
e.g., sedans, pedestrians, or bicycles. In contrast with the past
methods, our method can simultaneously solve three important
tasks in video analysis, including foreground (moving) object
segmentation, visual object tracking, and object categorization.

Our method starts with partitioning each image of the input
video sequence into a set of fixed-size patches. Then, we match
the patches over consecutive images to generate a number of
cubic cells in the 3D coordinate (the 2D spatial coordinate
plus the coordinate of time), called “motion primitives”. One
trajectory usually contains dozens of motion primitives on an
observation period (e.g. a window of images) and one motion
primitive usually consists of several (at most 8 patches in this
work) perceptually similar and spatially smooth patches over
consecutive images. Each motion primitive is likely to have
one dominant moving direction and all the motion primitives
belonging to the same trajectory are well connected with each
other. Motion primitives are introduced as the intermediate-
level representation of object trajectories. Figure 1(c) intu-
itively illustrates how motion primitives constitute the object
trajectories. Our previous work [27] firstly used the motion
primitives and demonstrated its superiority over the traditional
representations [42] [3]. In this work, we introduce a new
procedure to generate motion primitives that respects both
appearance consistency and spatial smoothness.

Taking motion primitives as graph nodes, we link each
node to its neighbor nodes in the 3D coordinate with one
edge to construct an adjacent graph. One edge can be either
positive or negative, indicating the two nodes either coop-
eratively or conflictingly belong to the same trajectory. We
call this resulting adjacent graph as the spatio-temporal graph
(ST-graph) because it can convey both the spatial and the
temporal information. The negative (conflicting) constraints
serve as important complements to the positive (cooperative)
constraints, both of which should be satisfied with probability
during inference. For example, if two motion primitives have
significantly different moving directions, they are less likely
to belong to the same object trajectory. Similar negative
constraints could be obtained based on other cues, e.g. colors
and shapes. In this work, we assign one edge to be positive
or negative by examining the moving directions of the two
motion primitives. One practical procedure for constructing
ST-graph will be introduced in Section 2. Thus, the task
of trajectory parsing is phrased as a graph multi-coloring
(labeling) problem [3].

We present an efficient composite cluster sampling algo-
rithm to infer the optimal coloring solution on ST-Graph by
exploiting both the negative and the positive constraints. This
algorithm bases on the typical cluster sampling algorithm [3].
The coloring procedure is essentially a series of reversible
jumps between different solution states. Given one solution
state (or the current coloring of ST-graph) at one step, there
are two types of jumps moving to a new solution state. The
first one is to generate clusters of graph nodes by turning on/off
the edges with certain probabilities, select one cluster of nodes
and recolor them (namely assigning these motion primitives
to different trajectories) so that all internal constraints are

satisfied. Two nodes linked with one positive edge of being
”on” should stay the same color whereas two nodes linked
with one negative edge of being ”on” should be assigned
to different colors. The other type of jump is to apply the
object categorization method (introduced in later sections)
to the graph nodes (motion primitives ) with the identical
color, which also leads to the change of the current solution
state. The above two jumps alternate following the Metropolis
Hastings [28] method until convergence.

Moreover, the proposed framework can integrate various
scene context knowledge for parsing object trajectories in
video surveillance. Particularly, we utilize both scene knowl-
edge [16] and temporal consistency constraints to guide the
inference over ST-graph. For example, scene surface annota-
tions (once estimated) can be used for pruning false alarms
in tracking, and camera viewpoint parameters can be used for
predicting the potential object sizes and shapes by integrating
the results of object categorization.

Our proposed algorithm does not require any manual ini-
tialization steps and thus can start and track objects of interest
in a fully automatic manner.

1.1 Relation to Previous Works

In the literature of trajectory analysis, there are two main
streams: i) sequential inference based on current observa-
tion only, and ii) deferred inference based on a period of
observations.

The first category of methods usually learns object model
from previously observed video sequence, and further applies
the obtained model to predict the location of objects in the
current image. Exemplar methods include Particle Filtering
tracker [19], MeanShift tracker [9] and online boosting track-
ers [8], [2]. These methods can work well in video scenarios
with little ambiguities. However, they need to make decisions
immediately and update the learnt model on the fly, which may
lead to the open problem of model drift [26]. This problem
becomes even worse while there are long-time occlusions or
mutual interactions of moving objects in video.

The second category of methods conducts inference based
on a set of observations. To optimize, both deterministic infer-
ence algorithms, such as dynamic programming [18], multiple
hypothesis tracker [31], joint probabilistic data-association
filter [30], and stochastic sampling methods, e.g., Gibbs sam-
pler [45] and Data-driven MCMC [42], have been widely
studied and utilized for different models. There are strong
evidences showing that deferred inference is usually more
robust against various challenges than the sequential inference,
and could reduce the effect of model drift problem in practice.
Our work follows the methodology of deferred inference.

Graph based representation has been widely used in various
problems, where both cooperative and conflicting relationships
are modeled. In particular, Lin et al. [23] proposed to construct
candidacy graph for robust layered graph matching, that can
exploit the rich relationships between matching candidates.
Porway et al. [29] presented a rich graphical model to generate
multiple solutions for probabilistic inference. In contrast, the
proposed spatio-temporal graph representation further extends
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the rich graph representation to combine multiple different
cues within one single probabilistic framework.

Motion primitive can be viewed as a type of tracklet, that de-
picts one moving object over a set of consecutive images [39],
[36], [32]. One motion primitive usually comprises of small-
size patches, and one trajectory may include dozens of motion
primitives on a certain period (e.g. a window of 30 images), as
illustrated in Fig. 1. In contrast, tracklet methods tend to detect
the object of interest in every image and collect the detected
foreground blobs (of relatively large-size) from a window of
images to form one single trajectory segment, i.e. tracklet.
This is not a trivial difference, because our method aims to
over-segment the foreground regions of each image as the pre-
step and then search for the optimal partition during inference.
As a result, the spatial partition and the temporal tracking are
jointly solved to handle the realistic challenges, e.g., persistent
occlusions and object conglutinations. In the literature, other
similar works include the method by Kompatsiaris et al.
[20] which utilizes the spatio-temporal filters to separate the
foreground objects from the background structures, and that
by Basharat et al. [4] which proposes to construct motion
segments based on the spatial and temporal analysis of interest
point correspondence.

The remainder of this paper is arranged as follows. We
first introduce the spatio-temporal graph representation in
Section 2. In Section 3, we discuss the Bayesian treatment
of trajectory parsing, and introduce an efficient inference
algorithm which is further extended for multi-object tracking
. In Section 4, we define the posterior probability used in
Section 3 that integrates both the context prior models and
the likelihood models. Last, we report the evaluations with
comparisons to other methods in Section 5. We conclude this
paper in Section 6.

2 SPATIO-TEMPORAL GRAPH

We first introduce the representation of this work. Let I =
{I1, I2, ..Iτ} denote the observed images in video sequence,
t indexs the images and τ indicates the number of the recently
observed images. Table 1 summarizes the main notations used
in this paper. To separate the moving objects of interests
from the background, we utilize the background modeling
method based on Gaussian Mixture Model [17]. The derived
foreground regions in each single image are evenly partitioned
into a set of patches of fixed size (e.g. 12× 12 pixels). Thus,
our goal is to match these patches over consecutive images to
generate motion primitives, and further collect them as graph
nodes to construct the spatio-temporal graph.

2.1 Motion Primitive
We represent each object trajectory in a video sequence by a
bundle of ”motion primitive”, as illustrated in Fig. 1. Each
motion primitive consists of a short sequence of matched
patches over consecutive images. Like the super-pixel in 2D
image segmentation [25], motion primitives are introduced for
dimensionality reduction and efficient inference. Figure 2(a-
d) intuitively illustrate the proposed representation in the 3D
coordinate and the 2D images.
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Fig. 2. Trajectory with motion primitives. (a) Illustration of one
typical trajectory; (b) Illustration of one cropped trajectory from
It to It+τ1 ; (c) A cross-section of the trajectory at time t+τ2 and
3 patches of interest (in red box); (d) Each motion primitive is a
set of matched patches over consecutive images, represented
as a “cubic cell” in 3D coordinate. Notice that in (c) and (d),
image patches are depicted larger than its real size.

The ingredient step of constructing motion primitives is
to find patch-level correspondences between two consecutive
images. For one given image patch in It, our goal is to find
the most similar patch in the next image It+1, and meanwhile,
to encourage close-by patches to have similar displacements.
These objectives are similar with the previous works on optical
flow [24] [6] which assume the patch descriptors are constant
with respect to the pixel displacement field, and utilize addi-
tional regularization terms to impose spatial smoothness. To
address the particular problem here, we modify the optical
flow assumptions in the following way. First, for one given
patch, we restrict the search of the potential matches in the
next image to a relatively small neighbor region, which will
largely reduces the optimization time. Second, we allow one
patch not to match any patches in the next image, accounting
for occlusions or scene noises. These two assumptions allow
establishing correspondences across images that encourage
appearance consistency and spatial smoothness.

Let xt
u denote the center location of the uth patch in It,

and xt
u + dt

u denote the center location of its match in the
image It+1 where dt

u is the two dimension displacement
vector (the horizontal direction and the vertical direction),
dt
u ∈ [−M..M ]× [−M..M ] where the constant M determines

the size of the search window (i.e. 2M + 1). To describe the
image patch at xt

u, we extract from it a 59-D LBP (local binary
pattern) feature [15], a 39-D color histogram (RGB space,
13-D for each channel), and a 64-D histogram of oriented
gradient (HOG) [10], normalized by respective summation,
and concatenate them to form one single vector, denoted as
F (xt

u). We also introduce one binary variable ϕt
u ∈ [1, 0]

for each patch to indicate whether it has a match in the next
image. For every two consecutive images It and It+1, the
correspondence search is formulated as a discrete optimization
problem on the image lattice [24] [6] with the following cost
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TABLE 1
Main notations used in this work.

I = {I1, I2, ..Iτ} It denotes the input image indexed by t = 1..τ ; τ is the number of the recently observed images in the
video sequence.

u, v, i, j, k, l u and v index the image patches in one image; i and j index the motion primitives (or graph nodes)
collected for I; k and l index the trajectories in I.

xt
u,M, F (xt

u), ϕ
t
u ∈ [1, 0],dt

u, E(dt
u)For a patch in It, xt

u denotes its location; M the size of the search window; F (xt
u) the extracted

appearance feature; ϕt
u the occlusion state variable; dt

u the displacement vectors; E(dt
u) the energy by

the displacement vector dt
u.

G = (V,E),E+,E−, Vi G denotes the proposed spatio-temporal graph (ST-graph); V is the node set and E is the edge set; E+

the positive edge set; E− the negative edge set; Vi is the ith node in V.
e =< i, j >, ρe, qe For an edge e =< i, j > that connects Vi and Vj , ρe denotes its status variable (”on” or ”off”), qe the

edge probability.
∆ij , κ, ci ∆ij denote the cosine similarity between the moving directions of two nodes; κ is the constant threshold

of cosine similarity used for determining whether an edge is positive or negative; ci the color assigned
to the node Vi;

Dapr(·, ·) the Euclidean distance between two appearance feature vectors
W = {N,C[1..N ], L[1..N ]},W ′ W is the solution representation; W and W ′ are also used to indicate two different solution states during

inference; N the number of trajectories; Ck the object trajectory indexed by k; Lk the category label
of Ck .

Ck = {tbk, t
d
k,Γk,x

b
k,x

d
k} tbk indicates the index of the image where Ck occurs in video, tdk the index of the image where Ck

ends; Γk the skeleton shape of Ck; xb
k the birth position in 2D spatial coordinate (where Ck occurs in

the videos), xd
k the death position (where Ck ends).

cls(Vc), cls(Vc|W ) cls(Vc) denotes the current colors of the CCCP Vc (Composite Connected Component), and cls(Vc|W )
denotes the colors of Vc at the state W .

Cut+(Vc|W ), Cut−(Vc|W ) Cut+(Vc|W ) (Cut−(Vc|W )) denote the set of positive (negative) edges that are turned off probabilis-
tically around Vc at the state W ;

Πt
k = {yt

k, S
t
k}, k = 1..N,Πt

0 Πt
k denotes the foreground region in image It that belongs to the kth trajectory; yt

k the center location
of Πt

k in It; St
k the size of Πt

k; Πt
0 indicates the regions in It which do not belong to any trajectories.

Dir(hr, αr), Dir(ht, αt) denote the Dirichlet prior on the input vector hr (histogram of category occurrence frequencies) or ht

(histogram of trajectory lifespan) given the model parameter αr or αt.
Mf (yt

k|Lk), Ma(yt
k|Lk) Mf (yt

k|Lk) returns the normalized occurrence frequency of the object category Lk at the position yt
k;

Ma(yt
k|Lk) returns the predicated area for Lk at yt

k in images.
Mo(xb

k), M
p Mo(xb

k) returns the normalized frequencies of the death/birth of trajectories at position xb
k; Mp denotes

a set of trajectories.
Dske(Γk,Γ

p
l ), D

geo(Γk,Γ
p
l ) Γk denotes the skeleton of the kth trajectory in W ; Γp

l the lth skeleton in Mp; Dske(·, ·) returns the
similarity distance between two skeletons; Dgeo(·, ·) the geometric distance between two skeletons.

S(Πt
k, Lk) returns the categorization confidence for Πt

k of belonging to the category Lk , obtained by the
categorization method [10].

z1, .., z4 constant parameters that control the weights of different energy terms of the posterior

function:

min
{dt

u},{ϕt
u}

∑
u

{
γ, ϕt

u = 0;
E(dt

u), ϕt
u = 1. (1)

with

E(dt
u) = ∥F (xt

u)− F (xt
u + dt

u)∥2 +
1

σ1
∥dt

u∥2 (2)

+
∑

v∈ϵtu,ϕ
t
v=1

min(∥dt
u − dt

v∥2, T )

where ∥∥ is the Forbenius norm of a vector, and ϵtu indicates
the spatial neighborhood of the patch at xt

u (4-neighborhood
structure is used). γ is a relatively small constant, accounting
for the penalty of occlusions or large appearance variations.
We set γ = 0.05, σ1 = 300, T = 4 in this work. E(dt

u) defines
the energy to minimize for the patch xt

u, in which the ℓ2 norm
term is employed in the first two terms to account for feature
matching and displacement respectively, and a ℓ2 norm is used
in the third term to model the spatial smoothness in the patch
displacement field. The threshold T is introduced to allow for
certain amount of discontinuities.

We adopt the efficient belief propagation (BP) method [12]
to optimize Eq. (1), and the algorithm complexity is O(M2)

if using the distance transform method [24]. We set M = 2
which works well in practice. The whole procedure for every
two images, in the C++ platform, will converge in 0.2 second
on a workstation (P-IV 2.2GHz CPU, 8GB RAM) without any
code optimization.

Given the solved correspondences, we begin from the first
image to group the matched patches sequentially. One image
patch can be used for at most one motion primitive. To collect
one motion primitive, we select one image patch as the seed
and grow it to the consecutive images. This grouping proceeds
until one of the following conditions is satisfied: i) there
are no matched patches in the next image; ii) the length of
the current group is larger than a threshold (fixed to be 8
patches in this work); iii) the cosine similarity between the
displacement vectors of the firstly collected patch and the
newly collected patch is larger than a threshold (fixed to be 0.2
in this work). Each group of patches that contains at least 3
matched patches is considered as one single motion primitive.
The third condition is used to ensure a motion primitive has
one dominant moving direction. Although we collect image
patches sequentially to generate motion primitives, our method
can work well in practice due to its following characterizes.
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First, we densely collect patches to construct as many motion
primitives and preserve the uncertainties for the later stage
of inference. Second, the patch-level correspondences are
solved to optimal. Last, the above three conditions ensure
the generated motion primitives can well depict the object
trajectories ( in terms of appearance and motion).

2.2 Spatio-temporal Graph Representation
To represent the observed input video sequence, we propose
to construct a spatio-temporal graph G = (V,E), where V
indicates the set of graph nodes each representing one motion
primitive, and E indicates the set of edges between nodes.
Table 1 summarizes the major notations used in this paper.

The graph structure G is a 6-neighbor system, namely
each node has 6 edges connecting to its neighbor nodes.
To determine the neighbors for a node Vi in G, we use a
simple method as follows. First, we arrange all other nodes
in V in a descending list according to their spatial distances
(number of pixels) to Vi , denoted as R1, arrange them in
another descending list according to their temporal distances
(number of frames) to Vi, denoted as R2. Herein, every motion
primitive is considered as a set of image patches. The spatial
distance (or temporal distance) between two motion primitives
are calculated as the minimum geometric distance (or the
minimum difference of frame indices) between the two sets
of image patches. Second, for each point m = 1, 2, 3, ...
of the ranked list R1, append the mth node in R1 as the
neighbor of Vi if it also occurs in the top m positions in
R2. We repeat this procedure until 6 neighbor nodes of Vi

are found. Since the extracted motion primitives are usually
densely distributed in the 3D coordinate, the neighbor system
is usually fully connected. Once represented by the graph G,
the trajectory parsing problem is posed as an optimization
problem that computes the most probable colorings with a
posterior probability. The above ST-graph can convey both
spatial and temporal structure between nodes. Our goal is
to group these nodes so that both the spatial partitions on
individual images and the temporal matching over consecutive
images are solved to optimal.

2.3 Positive and Negative Edges
For every two neighbor nodes Vi and Vj in ST-graph, indexed
by i and j, we link them with an edge e =< i, j > for either
a negative (conflicting) or positive (cooperative) relationship.
A positive edge represents a cooperative constraint for two
nodes having the same color in the graph. A negative edge, in
contrast, requires the two nodes to have different colors, and
thus describes a competitive or conflicting constraint. Thus,
the edge set E contains two disjoint subsets, E = E+

∪
E−.

E+ is the set of positive edges and E− is the set of negative
edges.

We assign each edge to be positive or negative by examining
the moving directions of the two nodes. The moving direction
of one motion primitive is obtained by averaging over the
displacement vectors of the contained patches (see Eq. (1)).
For two motion primitives Vi and Vj , we calculate the cosine
similarity between their moving directions, denoted as ∆ij .

If ∆ij <= κ the edge is labeled to be negative; otherwise
the edge be positive. κ is set to be relatively small so
that two motion primitives that have significantly different
moving directions will be assigned to different colors with
high probability during inference. We set κ = −0.2 in this
work.

These edges are turned on and off probabilistically to
group nodes into clusters of nodes in a dynamic way so
that nodes in every cluster are strongly coupled [3]. On each
positive or negative edge, we define an edge probability for
the coupling strength. That is, at each edge e =< i, j >, we
define an auxiliary variable ρe ∈ {”on”,”off”} that follows an
independent edge probability qe. At the present state of the
ST-graph, for a positive edge e =< i, j >∈ E+, if the two
nodes have the same color, i.e., ci = cj , then the edge e is
turned on with the probability qe; if ci ̸= cj , e is turned off
deterministically (with probability 1).

On the other hand, for a negative edge e =< i, j >∈ E−,
if the two nodes have the same color ci = cj , e is turned off
deterministically; otherwise, e is turned on with probability qe
to enforce the two nodes stay in different colors.

We define qe as a statistical probability proportional to how
perceptually compatible those two motion primitives are. Let
Vi,u denote the uth patch of the ith motion primitive, x(Vi,u)
the center location of Vi,u in image. Let F (x(Vi,u)) = F (Vi,u)
denote the appearance feature extracted for Vi,u (see last
subsection), Dapr(·, ·) denote the Euclidean distance of two
appearance features, |Vi| indicate the number of patches con-
tained in Vi. We have,

qe=exp

− 1

σ2 × |Vi|

|Vi|∑
u=1

min
v∈[1..|Vj |]

Dapr [F (Vi,u), F (Vj,v)]

 (3)

where σ2 is the constant parameter (fixed to be 2). Thus, we
define the edge probability using local appearance features.
The edge probability is used to describe how strongly two
motion primitives are coupled during inference. For a positive
edge e ∈ E+, if the two nodes are perceptually similar (i.e.
have similar appearance features), qe should have a high value
to ensure the two nodes remain the same color with high
probability. On the other hand, if the two motion primitives are
linked with one negative edge e ∈ E− and they are similar in
appearance, there is large ambiguity between these two nodes
and qe should be high to ensure the inference algorithm can
exploit this informative conflicting constraint. Therefore, we
measure qe by the the same form in Eq. (3) for both positive
edges and negative edges.

One major step in each iteration of our method is to sample
ρe for each e independently following the edge probability qe.
Afterwards, the set of positive edges that remain ”on” form
several connected components (CCPs), in each of which every
node is reachable from other nodes by the positive edges being
”on”. The set of negative edges that remain ”on” form several
Composite CCPs (CCCPs) in each of which every CCP is
reachable from other CCPs by the negative edges being ”on”.
Thus one CCCP is a set of isolated CCPs that are connected
by negative edges. An isolated CCP is also treated as a CCCP.
Different motion primitives in the same CCP will receive the
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same color, whereas adjacent CCPs in the same CCCP will
receive different colors.

The proposed ST-graph integrates both positive edges and
negative edges, which is different from the commonly used
adjacent graph representations that utilize positive edges
only [42] [3]. Both positive and negative edges can impose
soft constraints that should be satisfied during inference as
shown in next section. To construct a ST-graph, there are two
major steps: calculating the edge probability qe in Eq. (3),
and classifying edge types. One may employ multiple cues
(e.g. color, shape, texture) to classify edge types. For example,
we could examine multiple cues sequentially to generate for
each cue a set of negative edges and assemble these edges
to form E−. The edges not labeled to be negative in any
exams form the positive edge set E+. Since the edges will be
probabilistically turned on/off during inference, these different
cues will be combined adaptively. In contrast, the existing
feature fusion methods usually combine cues by linear voting
schema [44] where voting weights are fixed during infer-
ence/testing. Although promising, it goes beyond the research
scope of this paper to investigate how to combine multiple
cues. To address the trajectory parsing problem, we simply
examine the moving directions of motion primitives to classify
edge types. We will show in experiments that the proposed
ST-graph can significantly boost the system performance in
comparisons to the typical adjacent graph representation [42].

3 TRAJECTORY PARSING

Once the ST-graph constructed, we can formulate the problem
of trajectory parsing as a graph multi-coloring task and define
the following solution representation W ,

W = {N,C[0..N ], L[1..N ]}, (4)

with

Ck = {tbk, tdk,xb
k,x

d
k,Γk}, k = [1..N ] (5)

where Ck denotes the kth object trajectory consisting of a set
of motion primitives, N is the total number of trajectories, and
Lk ∈ {′′sedan′′,′′ pedestrian′′,′′ bicycle′′} is the category
label of Ck. Each trajectory is parameterized by the following
variables: tbk indicates the index of the image where Ck occurs
in video, tdk indicates the index of the image where Ck ends
(i.e. left the view of camera), xb

k denotes the birth position
in 2D spatial coordinate (where Ck occurs in the videos), xd

k

denotes the death position (where Ck ends), and Γk denotes
the skeleton shape of Ck. Γk is a curve consisting of a
series of center positions (in 2D spatial coordinate) of motion
primitives that belong to the same trajectory. C0 represents
the foreground blobs not contained in any trajectories. For
ease of presentation, we use the notation system that assumes
one trajectory Ck appears in every image between tbk and tdk.
However, in practice, we allow one object trajectory Ck not
associating with any foreground regions in It, t ∈ [tbk..t

d
k] to

account for occlusions.

Algorithm 1 . Procedure for Composite Cluster Sampling on
ST-graph

1: Input: ST-graph G =< V,E >,E = E+
∪

E−; current
solution state;

2: For each e =< i, j >∈ E+

- if ci = cj then set ρe =”on” with probability qe;
- else set ρe =”off”;

3: For each e =< i, j >∈ E−

- if ci ̸= cj then set ρe =”on” with probability qe;
- else set ρe =”off”;

4: Collect CCPs based on positive edges of being ”on”;
5: Collect CCCPs based on negative edges of being ”on”;
6: Select one CCCP and assign colors to its CCPs to change

the solution state;
7: Accept the new solution state with the acceptance proba-

bility;
8: Go to Step 2, until convergence;

Thus, we can solve the problem of trajectory parsing by
maximizing a posterior (MAP) probability in the Bayesian
framework,

W ∗ = argmax
W

P (W |I;β, θ) (6)

= argmax
W

P (I|W ;β)P (W ; θ),

where β and θ are the parameters for the likelihood and prior
models respectively. The likelihood model and prior models
are defined in Section 4.

In this section, we first present an efficient composite cluster
sampling algorithm to address the multi-label graph coloring
problem, and then introduce the categorization method used in
this work to obtain Li. Last, we extend the inference algorithm
for multi-object tracking in video sequence.

3.1 Composite Cluster Sampling
Cluster sampling algorithm is first proposed by Swendson and
Wang [33] (SW) and refined by Edwards and Sokal [11] for
simulating Ising/Potts models in physics. It works iteratively
following the MCMC design. At each single step, it flips the
colors of multiple nodes, called a ”cluster” or a connected
component in the Ising Potts model. In contrast with the
single-site samplers, e.g., Gibbs sampler [14], that only flip
the color of one single node at each step, SW method can
move much more efficiently in the solution space. SW was
extended to general posterior probabilities in computer vision
by Barbu and Zhu [3], called Swendson-Wang Cut (SW-Cut),
which however only considers the cooperative relationships
between graph nodes. In this work, we further extend the SW-
cut method to explore both the cooperative and the conflicting
relationships in ST-graph.

Algorithm 1 summarizes the whole composite sampling
algorithm. In each iteration, it generates CCCPs, selects one
CCCP, and reassign labels to its CCPs such that all internal
constraints are satisfied.

The recoloring procedure is actually a MCMC jump that
drives the current solution state W to a new solution state,
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Algorithm 2 Procedure for Trajectory Parsing.
1: Input: currently observed images {I} in the video se-

quence;
Output: parsed object trajectories and their category la-
bels;

2: Extract motion primitives as graph nodes V;
3: Link every two neighbor motion primitives with either a

positive edge or a negative edge to construct the ST-graph
G =< V,E >;

4: Calculate edge probability qe, ∀e ∈ E+
∪
E−;

5: Initialize solution state;
6: Iterate until convergence,

- Call Algorithm 1;
- Call the recognition algorithm [10] to classify each

obtained CCP;

State W

probabilistically cut

deterministically cut

CCP1

CCP3CCP2

State W

positive edge

negative edge

CCP4 CCP1

CCP3CCP2

CCP4

Fig. 3. Two typical solution states during coloring ST-Graph.
The edges will be turned ”off” either probabilistically or deter-
ministically. The solid ellipses indicate the CCPs and the dashed
ellipses indicate the CCCPs. Edges between two CCPs are
depicted as one single edge.

denoted as W ′. Figure 3 illustrates two solution states W and
W ′ during inference. Each solid ellipse indicates one CCP.
Three CCPs connected by the negative edges form a CCCP,
depicted by the dashed ellipse. The symbol ∥ indicates the
edge that are turned ”off” probabilistically, and the cross in
black indicates the edge that are turned ”off” deterministically.

We implement the above jump between W and W ′ accord-
ing to the Metropolis-Hastings [28] method, which accepts
the jump of solution state with an acceptance probability. Let
Vc denote the selected CCCP, Q ( W → W ′ ) denote the
proposal probability of moving from state W to state W ′, and
Q(W ′ → W ) denote the proposal probability from W ′ to
W . The acceptance probability of the new state W ′ is defined
based on the proposal probability and the posterior probability,

min

(
1,

Q(W ′ → W )P (W ′|I)
Q(W → W ′)P (W |I)

)
(7)

The proposal probability Q(W → W ′) includes two parts:
(i) the probability of generating Vc at state W , denoted as
Q(Vc|W ) , and (ii) the probability of recoloring Vc that moves
W to W ′, denoted as Q(cls(Vc) = cls(Vc|W ′)|Vc,W ).
Herein, cls(Vc) denotes the new colors of Vc, cls(Vc|W ) and
cls(Vc|W ′) denotes the colors of Vc at the states W and W ′

respectively. Therefore, we have the proposal probability ratio

defined as follows,

Q(W ′→W )

Q(W→W ′)
=
Q(Vc|W ′)

Q(Vc|W )

Q(cls(Vc)=cls(Vc|W )|Vc,W ′)

Q(cls(Vc)=cls(Vc|W ′)|Vc,W )
, (8)

Given the chosen CCCP Vc in both states, the assign-
ment of new colors is independent of the surrounding
neighbors of Vc and is often assigned by uniform among
all valid assignments. Thus they cancel out and we have
Q(cls(Vc)=cls(Vc|W )|Vc,W ′)
Q(cls(Vc)=cls(Vc|W ′)|Vc,W ) = 1.

We further assume Vc is selected with the uniform prob-
ability from all possible CCCPs, and simplify the proposal
probability ratio for selecting Vc at states W and W ′ as:

Q(Vc|W ′)

Q(Vc|W )
=

∏
e∈Cut(Vc|W ′)(1−qe)∏
e∈Cut(Vc|W )(1−qe)

, (9)

where Cut(Vc|W ) = Cut+(Vc|W )
∪
Cut−(Vc|W ).

Cut+(Vc|W ) denotes the set of positive edges that are turned
off probabilistically around Vc at the state W ,

Cut+(Vc|W ) = (10)
{e =< i, j >∈ E+ : Vi ∈ Vc, Vj /∈ Vc, ci = cj at W}.

Cut−(Vc|W ) denotes the set of negative edges that are turned
off probabilistically around Vc at the state W ,

Cut−(Vc|W ) = (11)
{e =< i, j >∈ E− : Vi ∈ Vc, Vj /∈ Vc, ci ̸= cj at W}.

Cut(Vc|W ′) has the similar definition as Cut(Vc|W ). The
derivation of the above simplification is directly from the
previous work in [3] which considers the positive edges only.

In summary, there are two major steps in the proposed
inference method: 1) generate a set of CCCPs by turning on/off
the edges in E, either probabilistically or deterministically; 2)
randomly select one of the formed CCCPs, and recolor its
nodes to drive the solution from one state to the other state,
while preserving both the positive and negative constraints.
The move of states will be accepted with the probability
defined in Eq. (7). We conduct the above iterative procedure
until convergence or the reach of the maximum iteration
numbers (fixed experimentally).

3.2 Object Categorization
During inference, we utilize certain categorization method to
classify every obtained CCP. For the CCPs with the identical
color (i.e. belonging to the same trajectory), we accumulate
the categorization results and assign them to the category label
that achieves the highest accumulated confidence. This step of
object categorization serves as another MCMC jump which
moves the current solution state to a new one. In this way,
the object recognition task is integrated within our unified
framework for trajectory parsing.

We choose to use the SVM based method in [10] in this
work, which extracts the histograms of oriented gradients
(HOGs) as the appearance features, and extracts the histograms
of oriented optical-flow as the motion features, to describe the
object of interests in videos. Results of categorization are also
used for estimating various types of context priors which shall
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be introduced in Section 4. Integrating the scene geometry
knowledge and the predicted object category can provide
strong prior about the possible object locations and sizes
in the image. As an independent module, other recognition
algorithms can be alternately integrated into our framework.

3.3 Procedure of Trajectory Parsing
Algorithm 2 summarizes the proposed trajectory parsing pro-
cedure. we adopt the sliding window method [40] [2]
to handle the realtime video sequence. In particular, for a
window of observed images, we call Algorithm 2 to parse the
trajectories and then move to the next window (with a fixed
step, e.g. 15 images). Only the graph nodes falling inside the
current window can be recolored to change the solution state,
i.e. the ST-graph is constructed from the current window of
images. The parsed results from the previous windows (the
number of windows is up to the storage limitation) are used
for initializing the ST-graph of the current observation win-
dow, and calculating the posterior probability which shall be
discussed in Section 4. This sliding-window strategy, however,
will lead to the risk of model-drift that roosts in the ill-posed
nature of tracking[26]. However, our method works well in
practice due to the following characterizations: 1) there are
significant overlappings between two consecutive windows,
which experimentally improves the system robustness; and 2)
our method works on a batch of deferred images, rather than
one single image, which has shown to be successful in the
past literature.

4 BAYESIAN FORMULATION
This section introduces the definition of the posterior prob-
ability in Eq. (6) used in Section 3. These probabilities are
calculated from all the observations, instead of the current
observation window. We first introduce the notations used in
this section. Let Πt

k denote the foreground region in It that
belongs to the kth trajectory (Πt

k may correlate to more than
one motion primitives), k ∈ [1..N ]. Πt

0 indicates the regions in
It that do not belong to any trajectories. Πt

k is parameterized
to be {yt

k, S
t
k} where yt

k denotes its center location in It and
St
k its region size.

4.1 Prior Model
We impose three types of priors for parsing trajectories in
surveillance videos, including the recognition prior, the scene
context prior and the temporal prior.

4.1.1 Recognition Prior
We utilize a mixture of multi-nominal distributions on the cat-
egory occurrence frequencies to build recognition prior. Let hr

denote the histogram of category occurrence frequencies in the
currently observed images, and αr denote the corresponding
histogram pooled from the training data. Each bin of hr or αr

represents the occurrence frequency of one object category in
videos. Both hr and αr are normalized to be unit one. Thus,
the recognition prior has the following form,

P (L[1..N ]) = Dir(hr;αr), (12)

where Dir(hr;αr)1 denotes the Dirichlet prior on hr given
the model parameter αr. In this work, the Dirichlet model
is region-wise: we partition the whole image into several
regions and pool a parameter vector (i.e., αr) for each region.
In contrast with one global Dirichlet model, the mixture of
multiple Dirichlet models is more effective because the model
parameters are adaptive for different semantic regions, e.g. sky
and buildings.

4.1.2 Scene Context Prior
Objects of interest in surveillance systems, e.g., pedestrians,
vehicles and bicycles, have strong priors on their potential
locations and sizes in images [16]. Let y[tbk..t

d
k]

k = {ytbk
k ,y

tbk+1
k ,

. . ., y
tdk
k }, S

[tbk..t
d
k]

k = {Stbk
k , S

tbk+1
k , . . . , S

tdk
k }, we define the

scene context prior as follows:

P (Π[1..τ ]|L[1..N ])=

N∏
k=1

P (y
[tbk..t

d
k]

k |Lk)P (S
[1..τ ]
k |y[tbk..t

d
k]

k , Lk) (13)

with,

P (y
[tbk..t

d
k]

k |Lk) =
1

tdk − tbk + 1

tdk∑
t=tbk

Mf (yt
k|Lk) (14)

P (S
[tbk..t

d
k]

k |y[tbk..t
d
k]

k , Lk) = (15)

exp

− 1

tdk − tbk + 1

1

σ3

tdk∑
t=tbk

∥St
k −Ma(yt

k|Lk)∥2


where Mf (yt
k|Lk) returns the occurrence frequency of the

object category Lk at the position yt
k, and Ma(yt

k|Lk) returns
the predicated area of the object category Lk at yt

k. σ3 is
a constant (fixed to be 400). Once camera calibrated [16],
both Mf (yt

k|Lk) and Ma(yt
k|Lk) can be directly pooled from

the training data. Mf (yt
k|Lk) is normalized to be unit one.

The location-size map Ma(yt
k|Lk) indicates the minimal blob

size for each category at certain position in image. This map
can be pre-computed from the training data when system is
initialized, and thus almost no additional cost is introduced in
the inference stage.

4.1.3 Trajectory Temporal Prior
We define the temporal prior to be the product of two
independent priors. The first one is the prior distribution
on trajectory lifespan in the video, namely the duration (or
number of images) spanned by individual trajectories (from
birth to death). Like the recognition prior, we assume it follow
with a Dirichlet distribution. Let ht denote the histogram
each bin indicating the average lifespan of one category.
Denote Dir(ht;αt) as the probabilistic predication on ht

given the model parameter αt. ht is pooled from the currently
observed images and αt is pooled from the training data, both
normalized by respective summation.

The second temporal prior is related to the probability
distribution on the global properties of an object trajectory,

1. We have, Dir(h;αr) = 1
B(αr)

ΠK
i=1(hi)

αr
i where h is an K-

dimensionality vector and B(αr) is the normalizing constant which is a
multi-nominal beta function.
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including birth/death position and the moving direction. Given
the training data of annotated trajectories, we aggregate the
times of the birth or death positions of objects to generate a
2D frequency histogram, called birth/death map. We normalize
the frequencies in the birth/death map by their summarization.
Figure 4(b) visualizes the birth/death map generated for the
scenario in Figure 4(a). We do not distinguish the birth and
the death positions. Moreover, we collect all the trajectories
in training data, and extract for each trajectory the center
positions in each image to build the skeleton line. We further
collect all the skeleton lines to construct the trajectory map.
This idea is originally proposed by Wang et al. in [34], and
we use it as a global prior for trajectory parsing. Figure 4(c)
shows one trajectory map built for the scenario in Figure 4(a).

Formally, let Mo(xb
k) return the normalized frequency of

birth/death at the position xb
k, Mp indicate a set of object

trajectories, |Mp| indicate the number of trajectories in Mp,
Γp
l denote the skeleton of the lth trajectory in Mp. We define

the temporal prior as the product of three terms:

P (C[1..N ])=Dir(ht;αt)
N∏

k=1

Mo(xb
k)Mo(xd

k)P (Γk|Mp) (16)

P (Γk|Mp) is a mixture model:

P (Γk|Mp)∝
|Mp|∑
l=1

Dgeo(Γk,Γ
p
l ) exp

{
−K

[
Dske(Γk,Γ

p
l )
]}

, (17)

where Dgeo(Γk,Γ
p
l ) denotes the geometric distance between

Γk and Γp
l (calculated by averaging over the minimum dis-

tances from the points in Γk to the points in Γp
l ). Mo(·) is

directly estimated from training data. K is the Gaussian func-
tion with kernel size 1. Dske(·, ·) returns the similarity distance
between two skeleton shapes. Here we define Dske(·, ·) using
the squared Procrustes distance, as in [23],

Fig. 4. Scene context modeling. (a) One observed scene; (b)
birth/death map; (c) trajectory map; and (d) trajectory skeletons
where the blue lines indicate the trajectories in the trajectory
map and the gray line indicates one trajectory at the current
solution state.

4.2 Likelihood Model
In this work, the likelihood model takes the following form,

P (I|W )=
N∏

k=1

P (I|Lk)

tdk−1∏
t=tbk

P (Πt+1
k |Πt

k, Ck) (18)

with,

P (Πt+1
k |Πt

k, Ck) = exp

[
− 1

σ4
Dapr

(
F (Πt+1

k ), F (Πt
k)
)]

(19)

P (I|Lk) = exp

− 1

tdk − tbk + 1

tdk∑
t=tbk

1

σ5
S(Πt

k, Lk)

 (20)

where F (Πt
k) indicates the appearance features extracted from

Πt
k, and S(Πt

k, Lk) indicates the confidence of classifying Πt
k

as Lk by the method [10]. σ4 and σ5 are constant parameters
(fixed to be 2). P (Πt+1

k |Πt
k, Ck) is used to preserve the appear-

ance consistency of individual trajectories over consecutive
images. The other term P (I|Lk) is introduced to combine the
outputs of the object categorization method [10].

In summary, we can rewrite the posterior in Eq. (6) to
combine the prior terms and the likelihood terms using the
form of exponential family [35],

P (W |I) ∝ exp{−z1 logP (L[1..N ])− z2P (Π[1..τ ]|L[1..N ]) (21)
−z3 logP (C[1..N ])− z4 logP (I|W )}

where z1, .., z4 are constants that control the weights of differ-
ent terms in the final decision. We will introduce an effective
method to determine the proper values of these parameters in
Section 5.

5 EXPERIMENTS

In this section, we evaluate the proposed method on public
datasets and compare with other popular methods.

TABLE 2
Details of datasets used in this work.

LHI [41] PETS [13] I-80
No. of Clips 8 8 8

No. of images 8644 6455 7920
No. of Objects 241 112 104

5.1 Evaluation Protocol
Parameter Setting. In order to build various prior models as
introduced in Section 4.1, we develop an interactive toolkit,
which provides three major functions: camera viewpoint cal-
ibration, surface property estimation and parameters learning.
The parameters in prior models include αr (used for recogni-
tion prior), location-size map, αt (used for prior on trajectory
lifespan), birth/death map and trajectory map. In addition,
there are several free parameters used in our method, including
z1, . . . , z4. In order to determine the proper parameter values,
we adopt the method in [42] which bases on Linear Program-
ming (LP). Given the training data, this method begins with
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degrading the optimal solution state W ∗ obtained from the
groundtruth to another solution state W ′ by turning off/on
edges in the ST-graph probabilistically. For each W ′, we define
a constraint, namely the posterior probability ratio P (W∗)

P (W ′) ≥ 1,
that provides a linear inequality in terms of the parameters. We
repeat the above procedure to collect multiple constraints, and
then use Linear Programming to find a solution of positive
parameters with a minimum sum. More details are referred to
the literature [42]. We generate 3000 constraints in total and
fix the solved parameters in all experiments.

The other parameters of our method are set as follows. The
size of image patches is fixed to be 12 × 12 pixels and the
maximum number of patches in one single motion primitive is
set to be 8. The size of observation window is fixed to be 30
images. For each observation window, we conduct Algorithm
2 until convergence, after that we move the current observation
window with the step size of 10 images, and so on.

Evaluation setting. As aforementioned, our proposed solu-
tion consists of several components, including various types
of priors, the trajectory representation of ST-graph (with
motion primitives), the composite cluster sampling method,
and the object categorization module. For comparisons, we
introduce two more components. 1) An adjacent graph which
takes image patches (extracted from the foreground regions
in individual images) as graph nodes. Every node has four
neighbor nodes in the same image and two neighbor nodes
in the consecutive images. We use the strategies introduced
in Section II to construct the graph edges and edge vari-
ables except that only positive edges are built between graph
nodes. Similar graph structure has also been used in [42]. We
compare this adjacent graph with the proposed ST-graph. 2)
We also implement the SW-cut sampling algorithm [3] for
inference, which ignores the conflicting interactions between
graph nodes.

In order to demonstrate the benefit of every individual
component, we implement and evaluate several variants of the
proposed method. Table 5.1 summarizes the implementation
details. The first column shows the abbreviation names of al-
gorithms (TP denotes Trajectory Parsing), and the rest columns
show Y if the algorithm (e.g. TP-1) adopts the component
(e.g. ST-graph), or blank otherwise. Among these, algorithm
TP-1 uses the typical adjacent graph for representation and
the SW-cut method [3] for inference, while algorithm TP-2
instead uses the ST-graph and the presented composite cluster
sampling method. Algorithm TP-3 extends algorithm TP-2 by
additionally integrating the spatial prior (including the Dirich-
let prior on categorization and the location-size constraint) into
the proposed framework. Algorithm TP-4 further extends TP-3
by imposing the temporal context (including Dirichlet prior on
trajectory lifespan, birth/death map and trajectory map), and
algorithm TP-5 implements the unified solution proposed in
this work. For algorithms TP-1,..TP-4, the likelihood model
defined in Eq. (18) only contains the term P (Πt+1

k |Πt
k, Ck).

In the evaluations, we use the same parameter settings for the
above variants.

Metric: We evaluate the proposed method from two aspects:
multi-object tracking and object categorization. To quantita-
tively evaluate tracking performance, We adopt the metrics

in [39].
• Recall , number of correctly matched detections / total

number of ground-truth detections;
• Precision, number of correctly matched detections / total

number of output detections;
• FAF, average false alarms per image (smaller is better);
• MT, mostly tracked, percentage of ground truth trajecto-

ries which are covered by tracker output for more than
80% in length;

• ML, mostly lost, percentage of ground-truth trajectories
which are covered by tracker output for less than 20% in
length (the smaller the letter).

• IDS, ID Switch, the number of times that an object
trajectory changes its matched id.

• MOTP, Multi Object Tracking Precision, the average
ratio of the spatial intersection divided by the union
of an estimated object bounding box and the ground-
truth bounding box. This metric indicates the position
precisions of algorithms’ tracks.

We use the toolkit provided by Yang et al. [39] to calculate
above metrics. We utilize ROC curve to evaluate object
categorization.

5.2 Experiments on LHI, PETs and I-80
We integrate the proposed framework into a surveillance
system (refer to the details in [26]), which also includes a
background modeling module [17] and an object recognition
module [10]. The system is capable of processing 10 ∼ 15
images per second on a Pentium-IV 2.2GHZ computer (with
8GB RAM) after code optimization in the C++ platform.
Notice that the BP based optimization procedure for Eq. (1) is
parallelized at thread-level to fully take advantage of the CPU-
RAM architecture. Figure 5 shows a plot of energy versus
iteration number for the following algorithms: 1) algorithm
TP-2 which uses ST-graph for representation and the proposed
composite cluster sampler for inference; 2) algorithm TP-1
which uses the adjacent graph for representation and the SW-
cut method [3] for inference; and 3) algorithm MCMCDA [42]
which uses the adjacent graph for representation and the Gibbs
Sampler [14] for inference. The data used here is one video
clip selected from the LHI dataset and the parameter settings
are the same as introduced above. From the curves, we can
observe that the composite cluster sampler can converge in
about 50 iterations, the fastest convergence of all algorithms.
SW-cut achieves the second fastest convergence as it updates
larger space at each iteration than the single-site Gibbs sampler
(which usually converges in more than 10, 000 iterations). In
the following experiments, we set the maximum iterations in
Algorithm 1 and 2 to be 40 and 80, respectively.

In this experiment, we use video clips from three public
datasets: LHI [41], PETs [13] and I-80 2 and manually
annotate the object bounding boxes within each image as the
ground truths of object trajectories. Table 2 depicts the details
of each dataset.

We compare our proposed algorithms, namely TP-1, TP-
2,...,TP-5, with four popular tracking algorithms. i) The

2. http://ngsim.fhwa.dot.gov/
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TABLE 3
Evaluation setting of the proposed solution to trajectory parsing. Dir-C: Dirichlet Prior on object categorization; L-S: location-size

constraint; Dir-L: Dirichlet prior on trajectory lifespan; B-D Map: birth/death map; Trj-Map: trajectory map. ST-graph:
spatio-temporal graph with nodes of motion primitives; Adj-graph: adjacent graph with nodes of image patches. C-Cluster: the

proposed composite-cluster sampling algorithm; SW-cut: the SW-Cut sampling method [3].

Prior Terms Representation Inference
Alg-Name Dir-C L-S Dir-L B-D Map Trj-Map Obj-Categorization ST-graph Adj-graph C-Cluster SW-cut

TP-1 Y Y
TP-2 Y Y
TP-3 Y Y Y Y
TP-4 Y Y Y Y Y Y Y
TP-5 Y Y Y Y Y Y Y Y

Fig. 5. Energy-vs-Iteration for various inference methods,
including the Composite-Cluster sampler, the SW-cut method [3]
and the Gibbs sampler [42]. Given the posterior probabil-
ity P (W ) at the current step, the energy is calculated as
− log(P (W )).

MCMC-based Data Association (MCMCDA) by Yu et
al. [42]. ii) The method proposed by Birchfield et al. [5]
which combines the ideas of Lucas-Kanade and Horn-Schunck
to jointly track sparse interest points and edges (JLK). JLK
has several parameters, e.g. regularization weight, which are
set to be constant empirically as in [5]; iii) The spatial selection
algorithm for attentional visual tracking (AVT) proposed by
Yang et al. [40]. The key parameter is the number of attentional
regions (ARs) used for representing one object of interest.
Following the suggestions in [40], we use 60 ∼ 70 ARs for
the large-size objects and 30 ∼ 40 ARs for small-size objects
(the expected size of one object is up to the category and
location in the image). We set other parameters the same as
in the original article [40]. The inputs to the above baseline
methods contain the foreground regions, which are extracted
using a background model [17], and the detected foreground
blobs from which tracking is performed. To avoid insufficient
training of the background model, for each video sequence,
we manually annotate the objects of interest for the first
30 images and use these annotations to initialize the above
tracking algorithms. It is worth noting that algorithm TP-1
can be viewed as a special implementation of the algorithm
MCMCDA [42], whereas the differences are two folds: 1)
TP-1 does not use the prior model as in [42]3; and 2) TP-1

3. The prior model in [42] is to prefer long trajectories, which are not
applicable in surveillance environment, because the surveillance systems
usually have much stronger priors about the locations, lengths and density
of object trajectories in video.

uses the SW-Cut method for inference rather than the Gibbs
sampler in [42]. It is interesting to compare these two different
implementations on the same dataset.

TABLE 4
Quantitative tracking results on the LHI database [41]. R: recall

rate; P: precision rate.

R(%) P(%) FAF MT(%) ML(%) MOTP(%) IDS/GT
MCMCDA [42] 79.4 81.0 0.458 78.9 11.2 73.5 54/241

JLK [5] 82.1 84.7 0.257 87.5 6.3 79.4 31/241
AVT [40] 85.3 86.1 0.219 89.6 4.1 83.9 27/241

TP-1 80.1 81.2 0.467 81.2 9.1 81.3 52/241
TP-2 88.6 89.1 0.313 89.5 3.8 87.9 43/241
TP-3 89.2 91.2 0.268 91.4 3.5 88.5 37/241
TP-4 91.3 92.4 0.202 92.1 2.9 90.4 36/241
TP-5 92.1 93.7 0.192 93.4 2.1 92.6 29/241

TABLE 5
Quantitative tracking results on the PETs database [13].

R(%) P(%) FAF MT(%) ML(%) MOTP(%) IDS/GT
MCMCDA [42] 83.1 81.4 0.797 76.8 9.3 82.5 21/112

JLK [5] 85.2 86.4 0.378 79.2 4.9 84.9 17/112
AVT [40] 86.6 84.1 0.457 81.3 4.5 87.2 16/112

TP-1 83.4 82.5 0.754 80.1 8.7 84.7 18/112
TP-2 88.1 86.3 0.405 84.3 3.7 89.5 9/112
TP-3 89.3 88.3 0.323 85.6 3.5 90.3 9/112
TP-4 90.2 88.7 0.314 86.1 3.3 91.4 7/112
TP-5 91.1 89.6 0.273 87.4 3.1 93.1 6/112

TABLE 6
Quantitative tracking results on the I-80 database.

R(%) P(%) FAF MT(%) ML(%) MOTP(%) IDS/GT
MCMCDA [42] 82.4 83.4 0.926 74.3 7.5 79.8 21/104

JLK [5] 89.1 85.6 0.318 85.2 5.1 86.4 17/104
AVT [40] 88.1 86.8 0.227 85.7 4.9 87.7 13/104

TP-1 83.2 84.7 0.717 79.5 6.9 85.2 18/104
TP-2 89.3 89.2 0.332 86.2 4.2 88.6 10/104
TP-3 91.4 89.9 0.253 87.4 3.6 90.3 7/104
TP-4 92.6 90.1 0.231 87.6 2.7 91.8 5/104
TP-5 93.2 92.8 0.104 88.5 2.3 92.7 2/104

Figure 6 shows several video sequences overlaid with the
tracking results by algorithm TP-5. Most of the videos are
very challenging due to the crowded objects, scale changes,
severe occlusions and low resolutions. Each cell includes the
mask images of foreground regions (top row) proposed by
the background modeling module and the results of tracking
(bottom row). For the last sequence from I80 dataset, we
only show three numbered objects of interest for the ease of
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display. From the results, we can observe that algorithm TP-
5 can successfully recover the object trajectories in all the
video clips. Particularly, it is interesting to observe that, while
there are severe occlusions (half-occlusions or full-occlusions)
in videos (e.g., the top-right video clip), our method can
still work robustly. This is due to several characterizations of
our method. First, while constructing motion primitives, we
allow one patch does not match with any patches in the next
image. Second, we aim to solve the optimal spatial partition
for every image while inferring the temporal matching at the
same step. Third, the prior models are very helpful to predict
the potential object positions in incoming images given the
current tracking results. In practice, we impose a boolean
status variable for each object of interest indicating whether
it is occluded (determined according to the tracking results of
other objects and scene knowledge, e.g., whether two objects
move to the same location, or whether one object is moving
behind a vertical surface). If yes, we will increase the weight
of temporal prior in the final decision. This simple strategy
has shown great success in practice.

Tables 4, 5 and 6 report the quantitative comparisons of our
method and other baseline algorithms on the LHI [41], PETs
and I-80 datasets. From the results, we can have the following
observations.

• Among all the algorithms, TP-5 achieves the best recall
and precision rates on all the three datasets. Specially,
algorithm AVT [40] is known as the stat-of-the-art track-
ing algorithm, and although its performance is already
good, our method remarkably outperforms it with the
margins of 6.8 percentages in terms of recall rate and
7.6 percentages in terms of precision rate on the LHI
database. Also, algorithm TP-5 clearly outperforms the
traditional sampling based algorithms, including MCM-
CDA [42] and JPDA [30].

• Our method achieves the FAF of 0.192, 0.273 and 0.104,
on the LHI, PETs and I-80 datasets, respectively. In
contrast, the corresponding best results of other four
baselines are 0.219, 0.378 and 0.227, which are much
higher than the proposed solution. Similar improvements
can be achieved in terms of the metric of MT. These
comparisons on the above two metrics show that our
method bears higher robustness which favors the practical
applications.

• Algorithm TP-2, which does not use any prior terms,
achieves better performance than MCMCDA [42], JLK
[5] and AVT [40] in terms of both recall rate and
precision. These comparisons well demonstrate the ad-
vantages of our proposed ST-graph that integrates motion
primitives and the ST-graph representation.

• The usage of spatial prior and temporal prior consistently
boosts the tracking performance on all datasets. This
observation comes from the comparisons between the
algorithms TP-2,TP-3,TP-4 and TP-5. Although the prior
terms used here are usually limited to certain surveillance
environment, they are valuable for practical applications
which require robust trajectory parsing.

In addition, algorithm TP-1 achieves the comparable perfor-

mance with MCMCDA [42], while it is worthy noting that
TP-1 is much more efficient in computation (SW-Cut usually
converges much faster than Gibbs sampler) and easier in
implementation (the only MCMC jump is to turn on/off edges
probabilistically).

From the comparisons between algorithms TP-5 and TP-
4 in Tables 4, 5 and 6, we can observe that involving
object categorization in inference can clearly improve the
robustness of parsing trajectories. In order to demonstrate how
the unified formulation takes effect of object categorization,
we compare the proposed unified solution with the separate
categorization algorithm [10] which is performed indepen-
dently and sequentially for each observed object/trajectory.
The data are from LHI dataset [41]. For each trajectory, once
the categorization results in individual images obtained, we
use the majority voting strategy to determine the final category
label of individual trajectories. Thus, we can calculate the false
positive rate and the true positive rate for each method. We
plot the ROC curves of three categories: pedestrians, sedans,
and bicycles in Figure 7(a), Figure 7(b) and Figure 7(c),
respectively. The solid curves represent the recognition per-
formance by our framework, and the dashed ones represent
the results by conducting object categorization independently
. The Area Under Curve (AUC) for each method is also shown
in the figure. We can observe that significant improvements on
categorization performance are obtained due to the integration
of our framework.

AUC=0.924

AUC=0.826

AUC=0.943

AUC=0.801

AUC=0.916

AUC=0.816

Fig. 7. ROC curves of object categorization; (a) pedestrians,
(b) bicycles, and (c) sedans. Horizontal direction indicates the
false positive rate and the vertical direction indicates the true
positive rate. The solid curves represent the recognition with tra-
jectory parsing and the dashed curves represent the recognition
of being executed independently without our framework.

5.3 Experiments on PETs’09 and TRECVID’08

We further evaluate the proposed algorithm TP-2 on PETS’09
dataset. The clip is selected from the S2L1 subset (first
viewpoint). It contains 795 images. This set has been used in
the previous works [1] [38]. We compare with three recently
proposed tracking algorithms, i) EMM [1], that formulates
multi-object tracking as the continuous energy minimization
task; ii) PRIMPT [22], that addresses the multi-person tracking
problem particularly; and iii) MIL [38] that employs a multiple
instance learning method to associate tracklets based on both
appearance and motion models. Table 7 reports the quantitative
tracking results on PETS’09. The figures of the three baseline
methods are directly from their respective papers. For our
method TP-2, all parameters are the same as in the last subsec-
tion. From the table, we could observe that all these algorithms
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Fig. 6. Exemplar results of trajectory parsing on challenging scenes. Each plot shows three images and their foreground masks.
Each recovered trajectory can be identified by the bounding boxes (in red) with the numbers in images. The clips in the first row
come from the LHI dataset [41], the down-left clip from the PETs [13] and the down-right clip from the I-80.

TABLE 7
Quantitative tracking results on PETS’09 .

Recall(%) Precision(%) FAF MT(%) IDS/GT
EMM [1] - - - 82.6 15/23

PRIMPT [22] 89.5 99.6 0.020 78.9 1/19
MIL [38] 91.8 99.0 0.053 89.5 0/19

Ours 95.8 99.4 0.031 92.6 1/19

TABLE 8
Quantitative tracking results on TRECVID’08 .

Recall(%) Precision(%) FAF MT(%) ML(%) IDS/GT
OffLineCRF [37] 79.2 85.8 0.996 78.2 4.9 253/919

OLDAMs [21] 80.4 86.1 0.992 76.1 4.6 224/919
PRIMPT [22] 79.2 86.8 0.920 77.0 5.2 171/919

OnlineCRF [39] 79.8 87.8 0.857 75.5 5.8 147/919
Ours 81.3 87.2 0.831 80.3 5.1 142/919

can achieve high Precision rates whereas our method achieves
the highest Recall rate.

We also evaluate our method on the challenging
TRECVID’08 dataset. We use the 9 video clips selected
by Yang et al. in [39], each of which has 5000 images.
These clips are filed in a busy airport, and have a high
density of people with frequent occlusions. We compare with
four tracking algorithms: i) OffLineCRF [37] which tracks
objects of interest by training an offline CRF model on pre-
labeled groundtruth data; ii) OLDAMs [21] that proposes an
online learned discriminative appearance models for tracking;
iii) PRIMPT [22] and iv) OnlineCRF [39] that applies the
online-learned Conditional Random Field model for multi-
target tracking. Table 8 reports the comparison results by
our method (TP-2) and other popular tracking algorithms.
The figures of those baseline methods are directly from their
respect papers. Our method achieves comparable tracking

performance as other baseline algorithms. These comparisons
clearly demonstrate our method, even without scene context
knowledge, can still achieve robust tracking in challenging
videos.

6 CONCLUSION AND FUTURE WORK
In this paper, we proposed a unified framework for jointly solv-
ing object segmentation, tracking and categorization in surveil-
lance videos. We presented a novel spatio-temporal graph rep-
resentation, which takes motion primitives as graph nodes, and
describes both cooperative and conflicting relationships be-
tween graph nodes by positive and negative edges respectively.
The Bayesian treatment of trajectory parsing problem enables
naturally integrating various types of context information. To
optimize, an efficient composite cluster sampling method was
utilized to overcome the problem of combinatorial search of
the optimal solution by constructing large MCMC jumps. Our
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method can perform object tracking automatically, without the
requirement of manual initialization. The comparisons with
the state-of-the-art tracking approaches on challenging datasets
demonstrated its advantages in achieving high-quality tracking
as well as wide applicability in practice.

In the future research, we plan to investigate the proposed
method in the following two aspects. First, the proposed ST-
graph can be used to combine multiple diverse cues adaptively.
In consideration of the widely use of graph representation, it
is easily to extend ST-graph for other image tasks, i.e. image
segmentation, and object detection. Second, the presented
motion primitives and related generation algorithm provide
a general way to represent video sequences, and thus can
be applied for other video tasks, e.g. event analysis, super-
resolution, and video classification.
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