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Abstract Although the object detection and recognition has received growing attention for
decades, a robust fire and flame detection method is rarely explored. This paper presents an
empirical study, towards a general and solid approach for fast detection of fire and flame
in videos, with the applications in video surveillance and event retrieval. Our system con-
sists of three cascaded steps: (1) candidate regions proposing by a background model, (2)
fire region classifying with color-texture features and a dictionary of visual words, and (3)
temporal verifying. The experimental evaluation and analysis are done for each step. We
believe that it is a useful service to both academic research and real-world application. In
addition, we release the software of the proposed system with the source code, as well as a
public benchmark and data set, including 64 video clips covered both indoor and outdoor
scenes under different conditions. We achieve an 82 % Recall with 93 % Precision on the
data set, and greatly improve the performance by state-of-the-arts methods.
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1 Introduction

Fire catastrophes always cause big lost to human kind. For example, Dhaka fire on June
2010 caused over 117 people died and over 100 injured. Forest fires in Russia in summer
2010 caused over 10 billion US dollars lost. Therefore, robust early-warning fire alarm
systems are always in need to protect people’s safety and properties. A fast and accurate
fire detection method is the key technology needed in such systems. As a result, fire or
flame detection has received great attention by research communities for decades [16, 32].
In recent years, fire detection also find applications in event retrieval on fire in digital image
or video archives [3].

Existing fire detection methods can be classified into two categories: sensor-based meth-
ods and vision-based methods. Sensor-based methods employed information captured by
special instruments such as infra-red sensors and smoke sensors, which are expensive and
not easy to get [27]. Moreover, those sensors typically detect the presence of certain parti-
cles generated by fire ionisation or photometry rather than the combustion itself. Therefore,
fire-alarm systems based on those sensors usually have time delay and result in high false
rates [29]. In contrast, vision-based methods using the normal R-G-B images or videos have
several advantages [13, 16, 32]. Firstly, cameras are becoming more functional with steady
dropping price. Thus images and videos can provide more detailed visual information for
fire detection cheaply. Moreover, surveillance cameras already installed in public places can
also be used for fire detection. Secondly, the response time can be faster than traditional
sensors, as cameras do not need to wait for the smoke or heat to diffuse. Finally, compared
to traditional point sensors, cameras can monitor a broader area, creating a higher possibil-
ity of fire detection at early stage [16]. Our system presented in this paper belongs to the
latter category, and aims to detect fire in video clips.

Despite of the growing needs and interests in fire detection, there is still not a large
number of work on fire detection in the computer vision literature [3]. Building a robust fire
detection system is challenging in the following two aspects: (1) fire or flame is flexible in
shape and intensity, and it has no fixed structure or appearance. Though color is a relative
distinct feature widely used for fire detection, the fire color appeared in images and videos is
affected by the camera quality (e.g. resolution, sharpness) and settings (e.g. white balance).
The fire also appears widely various in scale. Figure 1 shows six fire images with various

Fig. 1 Various appearances of fire
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Fig. 2 Framework of proposed fire detection system

shapes, intensities, colors, and scales. Thus, it is hard to build a solid and generic model
for fire. And (2) real application requires a fast fire detection method that can work in real-
time. Complicated methods or models can not find a position in real applications. Some
fire detection methods use filter banks [32], frequency transforms [23], and motion tracking
techniques, thus need more computational processing time and are not suitable for real-time
applications [3].

There are mainly four kinds of limitations in existing fire detection systems: (1) merely
based on color, or color plus motion information. Such as [13] and [4] only used color to
detect fire. Limited clues may lead to high false alarm. (2) merely worked for some special
situations, such as tunnel fire [18]. (3) used many heuristic fixed thresholds, such as [7],
[34] and [4], which restricted their applications. And (4) tested on limited data set, such
as Cho et al. [8] tested their method on six fire video clips, and Ko et al. [16] performed
their experiments on twelve video clips. Though they showed good results on the small data
set, their systems may be impractical for other untested situation. Furthermore, as far as we
know, there are no standard fire data sets.

Above mention four limitations lead to the big gap in real-world fire detection appli-
cations. The method we proposed in this paper is expected to narrow the gap. We have
randomly downloaded 64 fire video clips from public video sharing web sites.1 This data
set is much larger than those used by other researchers. We carried out a comprehensive
empirical study and experiments on this data set. Based on the experiment results, we adopt
three most effective fire features, including a local and a global color descriptor in CIE
Lab space, and a SURF (Speeded Up Robust Features [2]) texture descriptor. Then a Sup-
port Vector Machine (SVM) is employed to find fire regions. Based on our experiment, the
RBF(Radial Basis Function) SVM kernel works the best for fire detection. Different with
most existing fire detection methods which used only local features on pixel level, we find
that our proposed global color feature and local SURF texture feature on regions made a
good contribution for fire detection. Finally, a temporal verification is applied to reduce the
false alarm. The flowchart of our system is shown in Fig. 2. Our system does not use any
complicated features or tools, thus it is fast and can detect fire in real-time. Compared to
Toreyin and Cetin’s method proposed in [32], ours has higher recall and precision in fire
detection on our large testing data set. The remainder of this paper is organized as follows.

1Project page. The data set and software of the proposed system can be downloaded from the web page:
http://vision.sysu.edu.cn/systems/fire-detection/

http://vision.sysu.edu.cn/systems/fire-detection/
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Section 2 discusses the detailed implementation of our system based on empirical
study. Section 3 introduces the framework of our fire detection system. Section 5 presents
our experiment results. Comparisons with Toreyin and Cetin’s method proposed in [32]
are also given in this section. Finally Section 6 summarizes this paper and draws the
conclusion.

2 Empirical study and feature selection

Our objective is to propose a robust real-time fire detection method for real-world applica-
tion. However, as we discussed in Section 1, to build a solid and general model for fire is
hard. Instead, we aim to implement the system based on a comprehensive empirical study.
Since there are little open data set available for fire detection, we firstly collected a bun-
dle of fire videos, and then carried out comprehensive experiments on it to figure out the
empirically best feature and classifier kernel for fire detection. According to our survey, nei-
ther theoretical analysis nor empirical comparisons on fire feature selection has been done
before.

Color and texture are the most widely used features for general object detection and
recognition. Both features can be computed efficiently, hence suitable for real-time systems.
Almost all fire detection methods use color as a distinct feature of fire, but explore it in
different color space. Such as methods in [3, 32, 34] use RGB color information, and method
in [14] in used HSI color space. There are also other color spaces such as YUV and LAB.
However, there is no trial on theoretical analysis and empirical comparison on color feature
selection.

2.1 Global color feature

We experiment with four color spaces including RGB, YUV, HSV, and LAB. The global
color histogram of different color space consists of 96 bins, which is the concatenation
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Fig. 3 Precision-recall curves of different features with 3 kinds of SVM kernels
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of three 32-bin histograms for each channel. The precision-recall curves are shown on the
first row in Fig. 3. As the result indicates, RGB histogram gives the poorest result, YUV,
and HSV are better, and LAB performs the best in each SVM kernel setting. The highest
performance is obtained by LAB histogram with RBF kernel.

2.2 Local color-texture feature

Texture is another distinctive feature besides color. Many texture descriptors like SIFT [26],
and HOG [10] have been used widely and successfully on various kinds of object and scene
recognition. However, the high computational complexity limits their application in video
surveillance [20, 24, 25] and retrieval [11, 17]. To ensure that our system can run in real-
time, we adopt the SURF descriptor [2]. It has similar performance compared to SIFT but
much faster for computation. Moreover, SURF computing is parallelizable, so that it can
benefit from systems with multi-core CPUs and GPUs.

Actually, both SIFT and SURF operate on gray scale images only. There are several
methods to boost color saliency of SIFT descriptor [19, 21], like Hue-SIFT [35] and
CSIFT [1]. The former is a concatenation of hue histogram with SIFT descriptor, and
the latter computes SIFT descriptor on R, G, and B channels respectively. Other meth-
ods and their performance discussed in [30] have proved that local color information can
improve the robustness and distinctiveness of SIFT descriptor by a good extent. Methods
like CSIFT needs to compute 3 times over a single point and generates a descriptor with
very high dimension, which slows down the matching process. In our method, we attach a
local color histogram, which describes the color statistics within a SURF kernel, to a SURF
descriptor.

The SURF descriptors are computed over the keypoints detected by its Fast Hessian
Detector, yielding many 64 dimensional vectors. Because the quality and sharpness of video
frames are relatively low, the threshold of the detector is set to 100 in order to detect more
keypoints. The local color histograms are computed within the scope of each SURF kernel.
Its size is 24 bin, with 8 bins for each channel. They are combined to form an 88-dimensional
feature vector.

We need to obtain a fixed length vector representing the whole image, thus we use a
visual vocabulary, which is also known as “codebook”, to quantize all local features sampled
from the image.

To construct the codebook, we first sample, generate and collect local features from
all fire and non-fire training image patches. Then we use k-means clustering algorithm

Fig. 4 The left image illustrates keypoint sampling and the right image illustrates dense sampling. Blue dot
is the location of sampling point and the diameter of cyan circle represents the size of SURF kernel
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Table 1 Precision comparisons
of two sampling strategies Dense sampling (%) Keypoint sampling (%)

SURF 84.85 76.43

RGB + SURF 86.20 79.12

HSV + SURF 84.18 85.11

LAB + SURF 92.26 84.85

YUV + SURF 85.19 80.47Bold emphasis means that result
is better

to produce 500 centers after 50 iterations. The centers are the elements in a codebook,
since they are the most representative local features appear in our training data. The feature
searching, matching and encoding steps are the same as that in our system.

The precision-recall curves of five different local features are shown on the second row
in Fig. 3. As can be seen from the figure, including color information can greatly improve
the system performance. Overall, LAB histogram + SURF + RBF kernel achieves the best
performance.

2.3 Keypoint sampling VS. dense sampling

All previous experiments we conduct used keypoint sampling strategy in both codebook
construction and classification. Recent researches like [15] and [28] indicate that dense
sampling gives better results than keypoint sampling in local feature based object classifica-
tion. We now sample over the whole image using SURF kernels with several predetermined
intervals and scales, in both codebook construction and classification stage. The difference
between keypoint sampling and dense sampling is shown in Fig. 4.

Result of comparison between both sampling strategies is shown in Table 1. We find that
dense sampling outperforms keypoint sampling in most cases,which is consistent with the
conclusion in [15]. In smooth surfaces like walls and ceilings, Fast Hessian detector may
find few keypoints, which is an impact on classification results. In contrast, dense sampling
can gather sufficient information of an image, hence it is more robust.

2.4 SURF VS. SURF-128

SURF-128 is an extended SURF descriptor that has 128 dimensions. It calculates the sum
of positive and negative Laplacian separately, and the resulting signs in the descriptor dis-
tinguish positive gradient change from negative one. In our problem, it may be able to
distinguish bright flame from dark background. Although SURF-128 is generally more

Table 2 Accuracy comparison
of SURF and SURF-128 64-dimension (%) 128-dimension (%)

SURF 84.85 85.52

RGB + SURF 86.20 85.52

HSV + SURF 84.18 86.87

LAB + SURF 92.26 92.59

YUV + SURF 85.19 86.53Bold emphasis means that result
is better
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Fig. 5 Surveillance video example with still background. The background modeling result is shown in (a),
and the mask of candidate regions is shown in (c)

distinctive than standard 64-dimensional SURF, it will significantly slow down the match-
ing step. We compare SURF-128 with standard SURF to find out whether it deserves the
extra cost. As shown in Table 2, on average, SURF-128 is only slightly better. In the worst
case, SURF-128 is worse than standard SURF. Therefore, we abandon SURF-128 for our
real-time fire detection.

3 System framework

As shown in Fig. 2, our fire detection system consists of three cascaded parts: (1) candidate
fire regions proposing by a background model, (2) fire region classifying with color-texture
features and a dictionary of visual words, and (3) temporal verifying. We will discuss each
part in detail in the following three sections respectively.

3.1 Candidate fire region proposing

Most of the fire detection systems detect fire regions or pixels directly. Based on observa-
tions and statistic experiments, we find that fire regions are relatively bright, i.e. their pixel
intensities are above some certain value. We can use this feature to find fire region candi-
dates and fasten the further fire detection process. According to our survey, only Toreyin
et al. [32] tried to eliminate the non-fire background. However, they used a fix heuristic
threshold, which may fail when the background is bright or when there are fire reflections
on white wall. To deal with such challenging circumstances, we adopt a multi-level thresh-
old based on empirical study. The system can adjust the threshold automatically according

(b) Binary mask of 
high intensity region

(d) Binary mask of 
high intensity region

(c) Current frame, 
high background intensity, Th = 30

(a) Current frame,  
low background intensity, Th = 140

Fig. 6 Video examples with moving background and different illumination. The candidate fire region mask
shown in (b) and (d) is found by a multi-level threshold according to the background intensity values
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to the background intensity statistics. In our experiment, we manually divided the back-
ground intensity values into three levels, i.e. [0, 85), [85, 130), [130, 255], and set the
threshold values of foreground and background intensity difference as 140, 70, 30, accord-
ing to the various environment of our training data. Higher background intensity leads to
lower threshold, and vice versa. In this way, the system is able to adapt itself to variations
in the characteristics of the incoming data.

For a surveillance video clip, which is usually captured by a fixed camera, the back-
ground will be relatively static. We adopted the widely used Gaussian Mixture Models
(GMM) [31] to further reduce the fire region candidates. Examples are shown in
Figs. 5 and 6. Figure 5 illustrates a fire example taken by a surveillance camera. The first
image shows the result of background modeling, and the right most white mask shows the
proposed candidate fire regions. Figure 6 shows an example fire video with moving back-
ground. Since background modeling is not reliable in moving camera scenes, we use the
multi-level threshold to find the fire region candidates, as shown in the binary masks.

3.2 Feature extraction and region classification

At the initialization stage of classification, we use the pre-generated codebook to build a
K-D tree, which allows fast feature indexing and searching. For each incoming blob, we
densely sample LAB+SURF descriptors from its region with interval of 9 pixels and SURF
kernels of 9 × 9 scale. This step produces N descriptors.

For each descriptor dj ,j = 1, 2, ..., N , we query its distance D(dj , vi) to m nearest
neighbors vi |i = 1, 2, ...,m from the K-D tree. In order to prevent drawbacks of single
matching, dj can be matched with all m nearest neighbors. Theoretically, the larger m is
set, the better classification result will get, and the higher computational cost is needed. The
weight of matching dj with vi is calculated as follows:

wij = Kσ (D(dj , vi))
∑m

k=1 Kσ (D(dj , vk))
, i ∈ [1,m] (1)

Where Kσ (x) is a Gaussian kernel function defined as:

Kσ (x) = 1√
2πσ

exp

(

−1

2

x2

σ 2

)

(2)

While using this matching method, we assume that the distance between dj to vi satisfies
Gaussian distribution due to the effect of clustering, i.e. vi is the cluster centers of the
sampled features. This kernel converts smaller distance into higher probability, which is
widely used in measuring similarity of two feature descriptors [15].

We use a 500-bin histogram h to encode all local features in a fire candidate blob. The
values of each bin is calculated as follows:

hi =
N∑

j=1

wij , i ∈ [1, 500] (3)

After normalization, each bin represents the probability of occurrence of the correspon-
dent element in the codebook and the histogram. Finally, we compute the 96-bin normalized
global LAB histogram for the fire candidate blob. The concatenation of both histograms is
the final representation of the blob, and is used as the input to the SVM classifier.
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3.3 Temporal verification

Objects like street lamps and car lights have great similarity with fire in appearance, and
they are hard to be excluded based on a single frame. Thus, blobs classified as fire in the
previous step should be further verified using statistic of temporal variation (Fig. 7).

Fire mainly exhibits shape variation but not color or texture. When a new blob emerges,
we use three simple parameters: perimeter, area, and spatial distribution to estimate the sta-
bleness of the region over consecutive 25 frames, without having to figure out its exact
shape representation like Fourier descriptors used in [23]. Perimeter and area are very intu-
itive, and μp, μa, σp, σa denote their mean and standard deviation respectively. To calculate
spatial distribution, we divide the bounding rectangle of a blob into 4 equal sub rectan-
gles, and calculate the number of pixels within each sub rectangle that are labeled as “1” in
binary mask, namely d1, d2, d3, d4. The standard deviation of spatial distribution is defined
as follows:

σd = σd1 + σd2 + σd3 + σd4 (4)
We define that a blob is stable if the parameters satisfy the following condition:

σp < t1μp and σa < t1μa and σd < t1μa (5)

And a blob is unstable if the following condition holds:

σp > t2μp or σa > t2μa or σd > t2μa (6)

Where t1 and t2 are thresholds based on environmental settings. Indoor surveillance can
use lower values. In outdoor scenarios, where fire may be greatly influenced by air flow, the
thresholds are higher. False alarm rate can be further pruned by these two conditions, i.e.
Satisfying equation (5) and (6) should not be proposed as fire.

Apart from color, texture and temporal characteristics of fire, we can adopt more prior
knowledge to further remove the false alarm. For example, if we use blob tracking algo-
rithm such as MeanShift [9] and find that a newly emerged blob vanishes from its original

Fig. 7 The first row and the second row are two different frame of the same video respectively. From left to
right: illustration of perimeter, area and spatial distribution
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location after several frames, we can assert that it is not fire because fire does not move by
itself. There may be other prior knowledge which we can take advantage of, but they are
application specific and out of the scope of this paper.

4 Implementation details

We capture key frames from videos and manually crop out fire and non-fire patches as
samples for training. We collected 726 fire patches varied in colors, shapes, and intensities,
and 637 non-fire samples involving a variety of objects including human and cars, which are
full of visual details, and plain objects such as ceilings, walls, and skies, which are simple
in color and texture. We randomly select 4/5 of the patches for training and 1/5 for testing.

We exploit Support Vector Machine (SVM) to do fire classification, since SVM is one
of the latest and proved the most successful statistical pattern classifier. The LIBSVM [6] is
used in our system. The weights of positive and negative sample are balanced with respect
to their number. We search for optimized parameters using 5-fold cross validation with a
parameter range of 2−8 to 28. We test the system with three different SVM kernels: linear,
RBF, and χ2 [30].

All the parameters are fine-tuned and fixed according to the experiment results. Theoreti-
cally, the larger the value of m, i.e., the number of the nearest neighbors to be matched in the
codebook, the more accurate is the resulting matching. We set m=10 to achieve the balance
between computational cost and performance. The temporal verification thresholds t1, t2 in
Section 3.3 are set to be 0.02, 0.6 indoors, and 0.04, 0.8 outdoors according to the training
data, which shows that fire may be greatly influenced by air flow in outdoor scenarios. Note
that if t1 is significantly low, more stable candidates like the bulbs are recognized as fire,
with the increase of false alarm rate. Likewise, if t2 is significantly high, more fluctuating
ones like the blinking or flickering light might also be accepted.

5 Results and discussion

5.1 Data set collection

There are some small data set for fire detection available on internet [36], such as the data
set published by Cetin et al. includes 13 video clips [5]. But these data sets are usually
small and neither of them covers most of the real world scenarios. To test the performance
of our fire detection system, we introduce FireCollect, a larger fire and flame detection data
set. We downloaded the small public data sets and randomly downloaded fire video clips
from public video sharing web sites, such as youtube.com and youku.com. We also captured
some fire videos by ourselves to expand the data set. Finally we have 64 video clips in total
for the proposed data set. The average length of each clip is 2 minutes. We tried to cover
most of the real world application scenarios including fire indoor (20 clips), urban outdoor
(21 clips), and forest fire(9 clips) with both static and moving background. Potential false
alarms cases (14 clips) in the data set include car lights, human wearing fire-color clothes,
illumination changing, and so on. Sample image frames from the FireCollect data set are
showed in Fig. 8.

We use our newly collected data set to benchmark the performance of our method, and
we also test Toreyin et al.’s method [32], which is one of the state-of-the-art methods using
in video based fire detection. Since both methods make a decision at an interval of several
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(a) Indoor (b) Outdoor (c) Forest fire (d) No fire

Fig. 8 Sample image frames of different scenarios from the collected data set

frames, we do not use a frame-by-frame evaluation. We manually split the videos into indi-
vidual sections of 200 frames, and label them as either “contains fire” or “does not contain
fire”. As a result, we have 774 sections as testing units. We adopt the Precision and Recall
rate for measurement. To demonstrate the efficiency of our framework, the average process-
ing times as well as time delay of issuing a correct alarm are reported. In Fig. 9, there are
sample detection results of our method in different scenarios. It can be seen that our method
is robust in both indoor and outdoor scenes, while being insensitive to fire-like objects such
as moving car light. The comparison result is shown in Table 3.

Overall, our method has similar precision rate comparing to Toreyin’s method. How-
ever, we significantly outperform Toreyin’s method in recall rate. We should be aware that
miss in fire detection is much more critical than false alarm. Therefore, our method is
more preferable for real-life applications [22]. Besides, our framework is computationally
efficient compared to the state-of-the-art, with an average processing time of 25 fps when
image frames of size 352 × 288 are used, which is real-time and can be used in a real world
scenario.

We also highlight the comparison results of our method and Toreyin’s method for chal-
lenging instances picked out from the data set, as illustrated in Table 4. The typical scenarios
are described briefly in the right column as video content description. We can see our result
is much better than Toreyin’s method. However, when inspecting the result, we find some
typical failure cases. Both our method and Toreyin’s fail to detect the fire on initial com-
bustion, because the size of the flame is very small. Nevertheless, our method is still more
sensitive to fire with regarded to response time (see Table 3). Both methods issue some false

(a) Indoor 1 (b) Indoor 2 (c) Indoor 3 (d) Fire forest

(e) Outdoor 1 (f) Outdoor 2 (g) Outdoor 3 (h) No fire

Fig. 9 Detection results from the test video clips
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Table 3 Overall benchmark
performance Our method Toreyin et al. [32]

True positive 361 311

True negative 305 308

False positive 27 24

False negative 81 131

Precision rate 93.04 % 92.83 %

Recall rate 81.67 % 70.36 %

Avg. processing time 25 fps 20 fps

Avg. response time within 2s within 4sBold emphasis means that result
is better

alarms on flash lamp, since the lamp is in bright yellow tint and flicking in video, which is
similar to the characteristics of fire (see Fig. 10b).

Due to the naı̈ve thresholding in pixel color, Toreyin’s method always fail to recognize
fire with bright intensity, which is the main reason of its low recall rate. Our method, how-
ever, overcomes this problem and gains great advantage. Toreyin’s method also issues false
alarms on human skin and yellow shirts. In contrast, our method withstands the challenge.

To demonstrate the superior performance of the proposed method on other datasets, we
further test our algorithm on the widely used dataset published by Cetin et al. [5], and com-
pare with two competitors which we called Method 1 and Method 2, respectively. Method
1 [12] newly proposed by Cetin et. al. also utilizes color and temporal information for detec-
tion, without using texture features. Method 2 [33] adopts wavelet transformation to capture
the motion information of fire. The dataset we test contains 13 fire videos with a total num-
ber of 8093 frames. As the last two clips are not publicly available, we test with the first 11
clips and report the true detection rates in Table 5. For fair comparisons, the calculation of
metrics follows the standard process introduce in [12].

It is clearly shown that our algorithm outperforms [12] in 9 scenarios out of 11 clips,
with a highest detection rate of 92.6 %, compared to 89.8 % in [12] and 51.7 % in [33].

Table 4 Detection results for typical instances from the data set

Our method Toreyin et al. [32]

Input False False False False Video Content Description

positive negative positive negative

Video 1 0 0 0 6 A Christmas tree is

burning in a bright room

Video 2 4 0 9 1 Flash lamp and dazzling

flame in a warehouse

Video 3 0 0 0 9 A man doing fire

experiment in a dark place

Video 4 0 0 0 5 White flame burning in a

back yard

Video 5 0 0 1 0 A man is walking around

Video 6 0 0 4 0 Bank surveillance video
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(a) Video 1 (b) Video 2 (c) Video 3

(d) Video 4 (e) Video 5 (f) Video 6

Fig. 10 Sample results of the typical instances corresponding to Table 4. Note (b) shows a false alarm due
to the tint and flicker of the lamp

Table 5 Comparison of our method with two state-of-the-arts [12, 33] in terms of true detection rates in
dataset [5]

True detection rates

Video name Our method Method1 [12] Method2 [33] Description

Video 1 266/293 (90.8 %) 161/293 (54.9 %) 0/293 (0.0 %) A truck is burning

Video 2 487/510 (95.5 %) 413/510 (81.0 %) 0/510 (0.0 %) A woman lit a fire

in the kitchen

Video 3 350/381 (91.9 %) 310/381 (81.4 %) 0/381 (0.0 %) Branches are on fire

Video 4 1643/1655 (99.3 %) 1643/1655 (99.3 %) 627/1655 (37.9 %) Flame in a dark place 1

Video 5 2394/2406 (99.5 %) 2394/2406 (99.5 %) 2348/2406 (97.6 %) Flame in a dark place 2

Video 6 246/258 (95.3 %) 35/258 (13.6 %) 0/258 (0.0 %) A man lit a fire

Video 7 535/547 (97.8 %) 495/547 (90.5 %) 404/547 (73.9 %) Waste paper catches

fire outside

Video 8 255/513 (49.7 %) 501/513 (97.7 %) 0/513 (0.0 %) Flame in a dark place 3

Video 9 634/663 (95.6 %) 651/663 (98.2 %) 64/663 (9.7 %) A fire on a pot

Video 10 223/235 (94.9 %) 223/235 (94.9 %) 181/235 (77.0 %) Forest fire 1

Video 11 43/178 (24.7 %) 35/178 (19.7 %) 23/178 (12.9 %) Forest fire 2

Total 92.6 % 89.8 % 51.7 %
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Note some of the videos are recorded with hand-held moving cameras. Since [33] assumes
a stationary camera, it fails to detect most of the positive fire regions in the clips.

5.2 Efficiency

The proposed framework is computationally efficient. Our implementation is coded in C++
on an Intel I7 3.4 GHz processor with 4GB memory. On average, video clips are processed
25 fps when image frames of size 352 × 288 are used. It is sufficiently fast for real-time
applications due to the usage of simple features, the key point sampling strategy and the fast
indexing and searching tree structure. The method issues a correct alarm within 2 second on
the average.

6 Summary

In this paper, we present a robust real-time fire detection method based on empirical study.
To carry out the empirical experiments, we collect so far the largest open data set for
fire detection in video. Experiments show that, overall, LAB histogram plus SURF texture
descriptor, plus the RBF SVM kernel, lead to the best performance of an 82 % recall with
93 % precision on the proposed larger data set, as well as the highest true detection rate of
92.6 % on a popular small data set, which outperform the performances by state-of-the-arts
methods.

For future works, we can study more detailed fire characteristics to effectively detect the
fire on initial combustion and exclude the fire-like objects such as car light in night video.
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