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Cost-Effective Active Learning for
Deep Image Classification
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Abstract—Recent successes in learning-based image classifi-
cation, however, heavily rely on the large number of anno-
tated training samples, which may require considerable human
effort. In this paper, we propose a novel active learning (AL)
framework, which is capable of building a competitive classifier
with optimal feature representation via a limited amount of
labeled training instances in an incremental learning manner.
Our approach advances the existing AL methods in two
aspects. First, we incorporate deep convolutional neural networks
into AL. Through the properly designed framework, the feature
representation and the classifier can be simultaneously updated
with progressively annotated informative samples. Second,
we present a cost-effective sample selection strategy to improve
the classification performance with less manual annotations.
Unlike traditional methods focusing on only the uncertain sam-
ples of low prediction confidence, we especially discover the
large amount of high-confidence samples from the unlabeled set
for feature learning. Specifically, these high-confidence samples
are automatically selected and iteratively assigned pseudolabels.
We thus call our framework cost-effective AL (CEAL) standing
for the two advantages. Extensive experiments demonstrate that
the proposed CEAL framework can achieve promising results on
two challenging image classification data sets, i.e., face recognition
on the cross-age celebrity face recognition data set database and
object categorization on Caltech-256.

Index Terms— Active learning (AL), deep neural nets, image
classification, incremental learning.

I. INTRODUCTION

AIMING at improving the existing models by incremen-
tally selecting and annotating the most informative unla-
beled samples, active learning (AL) has been well studied in
the past few decades [3]-[12], and applied to various kinds
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of vision tasks, such as image/video categorization [13]-[17],
text/Web classification [18]-[20], and image/video retrieval
[21], [22]. In the AL methods [3]-[5], the classifier/model
is first initialized with a relatively small set of labeled training
samples. Then it is continuously boosted by selecting and
pushing some of the most informative samples to user for
annotation. Although the existing AL approaches [10], [11]
have demonstrated impressive results on image classification,
their classifiers/models are trained with hand-craft features
(e.g., HoG and SIFT) on small-scale visual data sets. The
effectiveness of AL on more challenging image classification
tasks has not been studied well.

Recently, incredible progress on visual recognition tasks
has been made by deep learning approaches [23], [24].
With sufficient labeled data [25], deep convolutional neural
networks (CNNs) [23], [26] are trained to directly learn
features from raw pixels, which have achieved the state-
of-the-art performance for image classification. However, in
many real applications of large-scale image classification,
the labeled data are not enough, since the tedious manual
labeling process requires a lot of time and labor. Thus, it
has a great practical significance to develop a framework by
combining CNNs and AL, which can jointly learn features and
classifiers/models from unlabeled training data with minimal
human annotations. However, incorporating CNNs into AL
framework is not straightforward for real image classification
tasks. This is due to the following two issues.

1) The labeled training samples given by current AL
approaches are insufficient for CNNs, as the majority of
unlabeled samples are usually ignored in AL. AL usually
selects only a few of the most informative samples (e.g.,
samples with quite low prediction confidence) in each
learning step and frequently solicit user labeling. Thus,
it is difficult to obtain proper feature representations by
fine-tuning CNNs with these minority of informative
samples.

2) The process pipelines of AL and CNNs are inconsistent
with each other. Most of AL methods pay close attention
to model/classifier training. Their strategies to select
the most informative samples are heavily dependent
on the assumption that the feature representation is
fixed. However, the feature learning and classifier train-
ing are jointly optimized in CNNs. Because of this
inconsistency, simply fine-tuning CNNs in the traditional
AL framework may face the divergence problem.

Inspired by the insights and lessons from a significant
amount of previous works as well as the recently
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Mlustration of our proposed CEAL framework. Our proposed CEAL progressively feeds the samples from the unlabeled data set into the CNN.

Then both of the clearly classified samples and most informative samples selection criteria are applied on the classifier output of the CNN. After adding
user-annotated minority of uncertain samples into the labeled set and pseudolabeling the majority of certain samples, the model (feature representation and

classifier of the CNN) is further updated.

proposed technique, i.e., self-paced learning [27]-[30],
we address above-mentioned issues by cost effectively
combining the CNN and AL via a complementary sample
selection. In particular, we propose a novel AL framework
called cost-effective AL (CEAL), which is enabled to fine-
tune the CNN with sufficient unlabeled training data and
overcomes the inconsistency between the AL and CNN.

Different from the existing AL approaches that consider
only the most informative and representative samples, our
CEAL proposes to automatically select and pseudoannotate
unlabeled samples. As Fig. 1 illustrates, our proposed CEAL
progressively feeds the samples from the unlabeled data set
into the CNN and selects two kinds of samples for fine-tuning
according to the output of CNN’s classifiers. One kind is the
minority of samples with low prediction confidence, called
most informative/uncertain samples. The predicted labels of
samples are most uncertainty ones. For the selection of these
uncertain samples, the proposed CEAL considers three com-
mon AL methods: least confidence (LC) [31], margin sam-
pling (MS) [32], and entropy (EN) [33]. The selected samples
are added into the labeled set after active user labeling. The
other kind is the majority of samples with high prediction
confidence, called high-confidence samples. The predicted
labels of samples are most certainty ones. For these certain
kinds of samples, the proposed CEAL automatically assigns
pseudolabels with no human labor cost. As one can see, these
two kinds of samples are complementary to each other for
representing different confidence levels of the current model
on the unlabeled data set. In the model updating stage, all the
samples in the labeled set and currently pseudolabeled high-
confidence samples are exploited to fine-tune the CNN.

The proposed CEAL advances in employing these two
complementary kinds of samples to incrementally improve the
model’s classifier training and feature learning: the minority of
informative kind contributes to train more powerful classifiers,
while the majority of high confidence kind conduces to learn
more discriminative feature representations. On one hand,
although the number is small, most uncertainty unlabeled
samples usually have a great potential impact on the classifiers.
Selecting and annotating them into training can lead to a
better decision boundary of the classifiers. On the other hand,
though unable to significantly improve the performance of

classifiers, the high-confidence unlabeled samples are close
to the labeled samples in the CNN’s feature space. Thus,
pseudolabeling these majority of high-confidence samples for
training is a reasonable data augmentation way for the CNN
to learn robust features. In particular, the number of the
high-confidence samples is actually much larger than that
of most uncertainty ones. With the obtained robust feature
representation, the inconsistency between the AL and CNN
can be overcome.

For the problem of keep the model stable in the training
stage, many works [34], [35] are proposed in recent years
inspired by the learning process of humans that gradually
include samples into training from easy to complex. Through
this way, the training samples for further iterations are grad-
ually determined by the model itself based on what it has
already learned [30]. In other words, the model can gradually
select the high-confidence samples as pseudolabeled ones
along with the training process. The advantages of these
related studies motivate us to incrementally select unlabeled
samples in an easy-to-hard manner to make pseudolabeling
process reliable. Specifically, considering that the classification
model is usually not reliable enough in the initial iterations, we
employ high-confidence threshold to define clearly classified
samples and assign them pseudolabels. When the performance
of the classification model improves, the threshold correspond-
ingly decreases.

The main contribution of this paper is threefold. First, to
the best of our knowledge, our work is the first one addressing
the deep image classification problems in conjunction with
AL framework and CNN training. Our framework can be eas-
ily extended to other similar visual recognition tasks. Second,
this paper also advances the AL development by introducing
a cost-effective strategy to automatically select and annotate
the high-confidence samples, which improves the traditional
samples selection strategies. Third, experiments on challenging
cross-age celebrity face recognition data set (CACD) [1] and
Caltech 256 [2] data sets show that our approach outperforms
other methods not only in the classification accuracy but also
in the reduction of human annotation.

The rest of this paper is organized as follows. Section II
presents a brief review of related work. Section III discusses
the component of our framework and the corresponding
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learning algorithm. Section IV presents the experiments
results with deep empirical analysis. Section V concludes this

paper.

II. RELATED WORK

The key idea of the AL is that a learning algorithm
should achieve higher accuracy with a fewer labeled training
samples, if it is allowed to choose the ones from which it
learns [31]. In this way, the instance selection scheme is
becoming extremely important. One of the most common
strategy is the uncertainty-based selection [12], [18], which
measures the uncertainties of novel unlabeled samples from
the predictions of previous classifiers. Lewis [12] proposed
to extract the sample, which has the largest EN on the
conditional distribution over predicted labels, as the most
uncertain instance. The support vector machine (SVM)-based
method [18] determined the uncertain samples based on
the relative distance between the candidate samples and
the decision boundary. Some earlier works [19], [38] also
determined the sample uncertainty referring to a committee of
classifiers (i.e., examining the disagreement among class labels
assigned by a set of classifiers). Such a theoretically motivated
framework is called query-by-committee in literature [31].
All the above-mentioned uncertainty-based methods usually
ignore the majority of certain unlabeled samples and thus
are sensitive to outliers. The latter methods have taken the
information density measure into account and exploited
the information of unlabeled data when selecting samples.
These approaches usually sequentially select the informative
samples relying on the probability estimation [6], [37] or
prior information [8] to minimize the generalization error of
the trained classifier over the unlabeled data. For example,
Joshi et al. [6] considered the uncertainty sampling method
based on the probability estimation of class membership for
all the instances in the selection pool, and such a method can
be effective to handle the multiclass case. In [8], some context
constraints are introduced as the priori to guide users to tag
the face images more efficiently. At the same time, a series of
works [7], [24] is proposed to take the samples to maximize
the increase of mutual information between the candidate
instance and the remaining unlabeled instances under the
Gaussian process framework. Li and Guo [10] presented a
novel adaptive AL approach that combines an information
density measure and a most uncertainty measure together to
label critical instances for image classifications. Moreover, the
diversity of the selected instance over the certain category has
been taken into consideration in [4] as well. Such a work is
also the pioneer study expanding the SVM-based AL from the
single mode to batch mode. Recently, Elhamifar et al. [11] fur-
ther integrated the uncertainty and diversity measurement into
a unified batch mode framework via convex programming for
unlabeled sample selection. Such an approach is more feasible
to conjunction with any type of classifiers, but not limited
in max-margin based ones. It is obvious that all the above-
mentioned AL methods consider only those low-confidence
samples (e.g., uncertain and diverse samples), but losing the
sight of a large majority of high-confidence samples. We hold
that due to the majority and consistency, these high-confidence
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samples will also be beneficial to improve the accuracy and
keep the stability of classifiers. Even more, we shall
demonstrate that considering these high-confidence samples
can also reduce the user effort of annotation effectively.

III. COST-EFFECTIVE ACTIVE LEARNING

In this section, we develop an efficient algorithm for the pro-
posed CEAL framework. Our objective is to apply our CEAL
framework to deep image classification tasks by progressively
selecting complementary samples for model updating. Suppose
we have a data set of m categories and n samples denoted
by D = {x;}]_,. We denote the currently annotated samples

of D by DL, while the unlabeled ones by DY. The label
of x; is denoted by y; = j, j € {1, ..., m}, i.e., x; belongs to
the jth category. We should give two necessary remarks on
our problem settings. One is that in our investigated image
classification problems, almost all data are unlabeled, i.e.,
most of the {y;} values of D are unknown and needed to be
completed in the learning process. The other remark is that DY
might possibly been input into the system in an incremental
way. This means that data scale might be consistently growing.

Thanks to handling both manually annotated and automat-
ically pseudolabeled samples together, our proposed CEAL
model can progressively fit the consistently growing unlabeled
data in such a holistic manner. The CEAL for deep image
classification is formulated as follows:

1 n m

min  —— 1{y; = j}lo i = Jlxi; 1
i lez_; (i = j}log p(yi = jlxz W) (1)
where 1{-} is the indicator function, so that
1{a true statement} = 1 and 1{a false statement} = 0,
and W denotes the network parameters of the CNN.
p(yi = jlxi; W) denotes the softmax output of the CNN
for the jth category, which represents the probability of the
sample x; belonging to the jth classifiers.

The alternative search strategy is readily employed to opti-
mize (1). Specifically, the algorithm is designed by alter-
natively updating the pseudolabeled sample y; € DY and
the network parameters V. In the following, we introduce
the details of the optimization steps and give their physical
interpretations. The practical implementation of the CEAL will
also be discussed in the end.

A. Initialization

Before the experiment starts, the labeled samples DL is
empty. For each class, we randomly select a few training
samples from DY and manually annotate them as the starting
point to initialize the CNN parameters W.

B. Complementary Sample Selection

Fixing the CNN parameters WV, we first rank all unlabeled
samples according to the common AL criteria and then man-
ually annotate those most uncertain samples and add them
into DL, For those most certain ones, we assign pseudolabels
and denote them by D
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1) Informative Sample Annotating: Our CEAL can use
in conjunction with any type of common actively learning
criteria, e.g., LC [31], MS [32], and EN [33] to select K
most informative/uncertain samples left in DY. The selection
criteria are based on p(y; = j|x;; W), which denotes the
probability of x; belonging to the jth class. Specifically, the
three selection criteria are defined as follows.

1) LC: Rank all the unlabeled samples in an ascending
order according to the I¢; value. /c; is defined as

le; = m]'ng pyi = jlxiz W). )

If the probability of the most probable class for a sample

is low, then the classifier is uncertain about the sample.
2) MS: Rank all the unlabeled samples in an ascending

order according to the ms; value. ms; is defined as

ms; = p(yi = jilxi; W) — p(yi = jplxis W) ()

where jj and j, represent the first and second most prob-
able class labels predicted by the classifiers, respectively.
The smaller of the margin means the classifier is more
uncertain about the sample.

3) EN: Rank all the unlabeled samples in an descending
order according to their en; value. en; is defined as

m

eni =— > p(yi=jlxi; W)log p(yi = jlxi; W).  (4)
j=1

This method takes all class label probabilities into

consideration to measure the uncertainty. The higher
EN value, the more uncertain is the sample.

2) High-Confidence Sample Pseudolabeling: We select the
high-confidence samples from DY, whose EN is smaller than
the threshold . Then we assign clearly predicted pseudolabels
to them. The pseudolabel y; is defined as

-

j* = argmjax pyi = jlxi; W)

j*, en; <0
R 5
Vi {O, otherwise %)

where y; = 1 denotes that x; is regarded as high-confidence
sample. The selected samples are denoted by D, Note that
compared with classification probability p(y; = j*|x;; W) for
the j*th category, the employed EN en; holistically considers
the classification probability of the other categories, i.e., the
selected sample should be clearly classified with high confi-
dence. The threshold ¢ is set to a large value to guarantee a
high reliability of assigning a pseudolabel.

C. CNN Fine-Tuning

Fixing the labels of self-labeled high-confidence
samples D and manually annotated ones D’ by active user,
(1) can be simplified as

N m
1 . -
%n—ﬁgj;l{yi=J}logp(y,-=1|x,-,w> (©6)
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where N denotes the number of samples in DX U DL, We
employ the standard back propagation to update the CNN’s
parameters V. Specifically, let £ denote the loss function
of (6), then the partial derive of the network parameter W
according to (6) is

oL a_ﬁ S Uy = jHog p(yi = jlxii W)
oW ow
N m H
1 Alog p(yi = jlxi; W)
= -y L2 =10 Py
i=1 j=1
N
1 . o 02 (W)
= ;(l{yi = b= pOi =l W) ———
(7

where {z; (x;; )/V)};',’:1 denotes the activation for the ith sample
of the last layer of CNN model before feeding into the softmax
classifier, which is defined as
' e i W)
P(yi=]|xi,W)=W- (8)
After fine-tuning, we put the high-confidence samples D
back to DY and erase their pseudolabel.

D. Threshold Updating

As the incremental learning process goes on, the classifica-
tion capability of classifier improves and more high-confidence
samples are selected, which may result in the decrease of
incorrect autoannotation. In order to guarantee the reliability of
high-confidence sample selection, at the end of each iteration #,
we update the high-confidence sample selection threshold by
setting

0 =0
5= 1% t ©)
o0—drxt, t>0

where Jy is the initial threshold and dr controls the threshold
decay rate.

The entire algorithm can be then summarized into
Algorithm 1. It is easy to see that this alternative optimizing
strategy finely accords with the pipeline of the proposed CEAL
framework.

IV. EXPERIMENTS
A. Data Sets and Experimental Settings

1) Data Set Description: In this section, we evaluate our
CEAL framework on two public challenging benchmarks, i.e.,
CACD [1] and the Caltech-256 object categorization [2] data
set (see Fig. 2). CACD is a large-scale and challenging data set
for face identification and retrieval problems. It contains more
than 160000 images of 2000 celebrities, which are varying
in age, pose, illumination, and occlusion. Since not all of the
images are annotated, we adopt a subset of 580 individuals
from the whole data set in our experiments, in which 200 indi-
viduals are originally annotated and 380 persons are extra
annotated by us. Especially, 6336 images of 80 individuals
are utilized for pretraining the network and the remaining
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Fig. 2.
lines: sample images from the Caltech-256 [2] data set. Last line: samples images from CACD [1].

Algorithm 1 Learning Algorithm of CEAL
Input:
Unlabeled samples DY, initially labeled samples DZ,
uncertain samples selection size K, high-confidence sam-
ples selection threshold o, threshold decay rate dr, maxi-
mum iteration number 7', fine-tuning interval ¢.
Output:
CNN parameters WW.
1: Initialize YW with DL,
while not reach maximum iteration 7 do
3. Add K uncertainty samples into D’ based on Eq. (2)
or (3) or (4),
Obtain high confidence samples D based on Eq. (5)
5:  In every ¢ iterations:

»

o Update W via fine-tuning according to Eq. (6) with
DH U DL
o Update J according to Eq. (9)
: end while
7: return W

[=))

500 persons are used to perform the experiments. Caltech-256
is a challenging object categories data set. It contains a total
of 30 607 images of 256 categories collected from the Internet.

2) Experimental Setting: For CACD, we utilize the method
proposed in [38] to detect the facial points and align the
faces based on the eye locations. We resize all the faces into
200 x 150 and then we set the parameters: d9p = 0.05,
dr = 0.0033, and K = 2000. For Caltech-256, we resize all
the images to 256 x 256 and we set dyp = 0.005, dr = 0.00033,
and K = 1000. Following the settings in the existing AL
method [11], we randomly select 80% images of each class to
form the unlabeled training set, and the rest are as the testing
set in our experiments. Among the unlabeled training set, we
randomly select 10% samples of each class to initialize the
network and the rest are for incremental learning process.
To get rid of the influence of randomness, we average
five times execution results as the final result.

We use different network architectures for CACD [1] and
Caltech-256 [2] data sets because the difference between face
and object is relatively large. Table I shows the overall network

Demonstration of the effectiveness of our proposed heuristic deep AL framework on face recognition and object categorization. First and second

TABLE I

DETAILED CONFIGURATION OF THE CNN ARCHITECTURE USED IN
CACD [1].IT TAKES THE 200 x 150 x 3 IMAGES AS INPUT AND
GENERATES THE 500-WAY SOFTMAX OUTPUT FOR CLASSES
PREDICTION. THE ReLU [39] ACTIVATION FUNCTION
Is NOT SHOWN FOR BREVITY

layer type kernel size/stride output size
convolution 5% 5/2 98 X 73 x 32
max pool 3x3/2 48 x 36 x 32
LRN 48 x 36 x 32
convolution(padding2) 5x5/1 48 x 36 x 64
max pool 3x3/2 23 x 17 x 64
LRN 23 X 17 x 64
convolution(padding1) 3x3/1 23 x 17 x 96
fe(dropout50%) 1x1x1536
fe(dropout50%) 1x1x1536
softmax 1 x 1 x 500

TABLE 1T

DETAILED CONFIGURATION OF THE CNN ARCHITECTURE USED IN
CALTECH-256 [2]. IT TAKES THE 256 x 256 x 3 IMAGES AS INPUT,
WHICH WILL BE RANDOMLY CROPPED INTO 227 x 227 DURING
THE TRAINING, AND GENERATES THE 256-WAY SOFTMAX
OUTPUT FOR CLASS PREDICTION. THE ReLU ACTIVATION
FUNCTION IS NOT SHOWN FOR BREVITY

layer type kernel size/stride output size
convolution 11 x11/4 55 X 55 x 96
max pool 3x3/2 27 x 27 x 96
LRN 27 x 27 x 96
convolution(padding2) 5x5/1 27 X 27 x 256
max pool 3x3/2 13 x 13 x 256
LRN 13 x 13 x 256
convolution(padding1) 3x3/1 13 x 13 x 384
convolution(padding1) 3x3/1 13 x 13 x 384
convolution(padding1) 3x3/1 13 x 13 x 256
max pool 3x3/2 6 X 6 X 256
fe(dropout50%) 1 x 1 x 4096
fe(dropouts0%) 1x 1 x 4096
softmax 1 x1 x 256

architecture for CACD experiments, and Table II shows the
overall network architecture for Caltech-256 experiments. We
use Alexnet [23] as the network architecture for Caltech-256
and using the ImageNet ILSVRC data set [40] pretrained
model as the starting point following the setting of [41]. Then
we keep all layers fixed and just modify the last layer to
be the 256-way softmax classifier to perform the Caltech-256
experiments. We employ Caffe [42] for CNN implementation.
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Classification accuracy under different percentages of annotated samples of the whole training set on the (a) CACD and (b) Caltech-256 data sets.

Our proposed method CEAL_MS performs consistently better than the compared TCAL and AL_RAND.

For CACD, we set the learning rates of all the layers
as 0.01. For Caltech-256, we set the learning rates of all
the layers as 0.001 except for the softmax layer, which is
set to 0.01. All the experiments are conducted on a common
desktop PC with an intel 3.8-GHz CPU and a Titan X GPU.
Average 17 h are needed to finish training on the CACD data
set with 44708 images.

3) Comparison Methods: To demonstrate that our proposed
CEAL framework can improve the classification performance
with less labeled data, we compare CEAL with new state-of-
the-art AL [triple criteria AL (TCAL)] and baseline methods
(AL_ALL and AL_RAND).

1) AL_ALL: We manually label all the training samples and
use them to train the CNN. This method can be regarded
as the upper bound (best performance that CNN can
reach with all labeled training samples).

2) AL_RAND: During the training process, we randomly
select samples to be annotated to fine-tune the CNN.
This method discards all AL techniques and can be
considered as the lower bound.

3) TCAL [3]: TCAL is a comprehensive AL approach and
is well designed to jointly evaluate sample selection
criteria (uncertainty, diversity and density), and has
overcome the state-of-the-art methods with much less
annotations. TCAL represents those methods who intend
to mine minority of informative samples to improve the
performance. Thus, we regard it as a relevant competitor.

Implementation Details: The compared methods share the
same CNN architecture with our CEAL on the both data sets.
The only difference in the sample selection criteria. For the
BaseLine method, we select all training samples to fine-tune
the CNN, i.e., all labels are used. For TCAL, we follow
the pipeline of [3] by training an SVM classifier and then
applying the uncertainty, diversity and density criteria to select
the most informative samples. Specifically, the uncertainty of
samples is assessed according to the MS strategy. The diversity
is calculated by clustering the most uncertain samples via
k-means with histogram intersection kernel. The density of one
sample is measured by calculating the average distance with
other samples within a cluster it belonged to. For each cluster,

the highest density (i.e., the smallest average distance) sample
is selected as the most informative sample. For CACD, we
cluster 2000 most uncertain samples and select 500 most infor-
mative samples according to the above-mentioned diversity
and density. For Caltech-256, we select 250 most informative
samples from 1000 most uncertain samples. To make a fair
comparison, samples selected in each iteration by the TCAL
are also used to fine-tune the CNN to learn the optimal feature
representation as AL_RAND. Once optimal feature learned,
the SVM classifier of TCAL is further updated.

B. Comparison Results and Empirical Analysis

1) Comparison Results: To demonstrate the effectiveness of
our proposed framework, we also apply the MS criterion to
measure the uncertainty of samples and denote this method
by CEAL_MS. Fig. 3 illustrates the accuracy-percentage of
annotated samples curve of AL_RAND, AL_ALL, TCAL,
and the proposed CEAL_MS on both CACD and Caltech-256
data sets. This curve demonstrates the classification accuracy
under different percentages of annotated samples of the whole
training set.

As illustrated in Fig. 3, Table III(a) and (b), our proposed
CEAL framework overcomes the compared method from
the aspects of the recognition accuracy and user annotation
amount. From the aspect of recognition accuracy, given the
same percentage of annotated samples, our CEAL_MS outper-
forms the compared method in a clear margin, especially when
the percentage of annotated samples is low. From the aspect
of the user annotation amount, to achieve 91.5% recognition
accuracy on the CACD data set, AL_RAND and TCAL
require 99% and 81% labeled training samples, respec-
tively. CEAL_MS needs only 63% labeled samples and
reduces around 36% and 18% user annotations, compared
with AL_RAND and TCAL. To achieve the 73.8% accuracy
on the caltech-256 data set, AL_RAND and TCAL require
97% and 93% labeled samples, respectively. CEAL_MS needs
only 78% labeled samples and reduces around 19% and 15%
user annotations, compared with AL_RAND and TCAL. This
justifies that our proposed CEAL framework can effectively
reduce the need of labeled samples.
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TABLE III
CLASS ACCURACY PER SOME SPECIFIC AL ITERATIONS ON THE (a) CACD AND (b) CALTECH-256 DATA SETS

(a)

Training iteration 0 2 4 6 8 10 12 14 16 18 20
Percentage of labeled samples 0.1 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.81 0.90 1
CEAL_MS 574% | 773% | 84.5% | 88.2% | 89.5% | 90.5% | 91.5% | 91.6% | 91.7% | 91.7% | 92.0%
TCAL 574% | 74.4% | 81.6% | 85.0% | 87.9% | 88.8% | 89.8% | 90.9% | 91.5% | 91.8% | 91.9%
AL_RAND 574% | 70.9% | 77.7% | 809% | 84.5% | 86.9% | 88.0% | 89.0% | 89.9% | 90.6% | 92.0%
AL_ALL - - - - - - - - - - 92.0%
(b)
Training iteration 0 2 4 6 8 10 12 14 16 18 20 22
Percentage of labeled samples 0.10 0.18 0.26 0.34 0.43 0.51 0.59 0.68 0.76 0.84 0.93 1
CEAL_MS 584% | 64.8% | 68.8% | 70.4% | 71.4% | 72.3% | 72.8% | 73.3% | 73.8% | 74.2% | 74.2% | 74.2%
TCAL 584% | 62.4% | 65.4% | 67.5% | 69.8% | 70.9% | 71.9% | 72.5% | 73.2% | 73.6% | 73.9% | 74.2%
AL_RAND 584% | 624% | 64.8% | 66.6% | 67.5% | 69.1% | 704% | 71.2% | 724% | 72.9% | 73.6% | 74.2%
AL_ALL - - - - - - - - - - - 74.2%
0.9
0.85
Z 08 > >
s s S
3 0.75 3 3
Q / Q / % /
© o7l If —CEAL_LC || © 07 —CEAL_MS || o7l I —CEAL_EN ||
’ CEAL_RAND ’ CEAL_RAND I CEAL_RAND
0.65 -==-AL_LC 0.65 ===AL_MS 0.65 ===AL_EN
AL_RAND AL_RAND AL_RAND
06 - - -AL_ALL 0.6 ---AL_ALL 0.6 S -ALALL
10% 20% 40% 60% 80% 100% 10% 20% 40% 60% 80% 100% 10% 20% 40% 60% 80% 100%
percentage of labeled samples percentage of labeled samples percentage of labeled samples
——CEAL_LC ——CEAL_MS ——CEAL_EN
0.9 CEAL_RAND || 0.9 CEAL_RAND || 0.9 CEAL_RAND ||
===AL_LC ===AL_MS ===AL_EN
085 AL_RAND 085 AL_RAND 085 AL_RAND
7 08 ---AL_ALL 7 08 ---AL_ALL ] 08 ---AL_ALL
3 0.75 3 0.75 3 0.75
o o o
© © ©
0.7 0.7 0.7
0.65 0.65 0.65
0.6 0.6 0.6

10% 20% 40% 60% 80% 100% 10% 20% 40%

percentage of labeled samples

percentage of labeled samples

40% 60% 80% 100%

percentage of labeled samples

60% 80% 100% 10% 20%

Fig. 4. Extensive study for different informative sample selection criteria on CACD (the first row) and Caltech-256 (the second row) data sets. These criteria
include LC (the first column), MS (the second column), and EN (the third column). One can observe that our CEAL framework works consistently well on

the common information sample selection criteria.

From the above results, one can see that our proposed
frame CEAL performs consistently better than the state-of-
the-art method TCAL in both recognition accuracy and user
annotation amount through fair comparisons. This is due to
that TCAL only mines minority of informative samples and
is not able to provide sufficient training data for feature
learning under the deep image classification scenario. Hence,
our CEAL has a competitive advantage in deep image clas-
sification task. To clearly analyze our CEAL and justify the
effectiveness of its component, we have conducted the several
experiments and discussed in the following sections.

2) Component Analysis: To justify that the proposed CEAL
can work consistently well on the common informative sam-
ple selection criteria, we implement three variants of CEAL
according to LC, MS, and EN to assess uncertain samples.
These three variants are denoted by CEAL_LC, CEAL_MS,

and CEAL_EN. Meanwhile, to show the raw performance of
these criteria, we discard the cost-effective high-confidence
sample selection of the above-mentioned variants and denoted
the discarded versions by AL_LC, AL_MS, and AL_EN. To
clarify the contribution of our pseudolabeling majority of high-
confidence samples strategy, we further introduce this strategy
into the AL_RAND and denote this variant by CEAL_RAND.
Since AL_RAND means randomly select samples to be anno-
tated, CEAL_RAND reflects the original contribution of the
pseudolabeled majority of high-confidence samples strategy,
i.e., CEAL_RAND denotes the method that uses only the
pseudolabeled majority of samples.

Fig. 4 illustrates the results of these variants on the data sets
CACD (the first row) and Caltech-256 (the second row). The
results demonstrate that giving the same percentage of labeled
samples and compared with AL_RAND, CEAL_RAND,
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simply exploiting pseudolabeled majority samples, obtains
similar performance gain as AL_LC, AL_MS, and AL_EN,
which employs the informative sample selection criterion.
This justifies that our proposed pseudolabeled majority of
samples strategy is effective as some common informative
sample selection criteria. Moreover, as one can see that
in Fig. 4, CEAL_LC, CEAL_MS, and CEAL_EN all
consistently outperform the pure pseudolabeling samples
version CEAL_RAND and their excluding pseudolabeled
samples versions AL_LC, AL_MS, and AL_EN in a clear
margin on both the CACD and Caltech-256 data sets,
respectively. This validates that our proposed pseudolabeled
majority of samples strategy is complementary to the
common informative sample selection criteria and can further
significantly improve the recognition performance.

To analyze the choice of informative sample selection
criteria, we have made a comparison among the three above-
mentioned criteria. We also make an attempt to simply com-
bine them together. Specifically, in each iteration, we select
top K/2 samples according to each criterion, respectively.
Then we remove repeated ones (i.e., some samples may be
selected by the three criteria at the same time) from the
obtained 3K /2 samples. After removing the repeated samples,
we randomly select K samples from them to require user
annotations. We denote this method by CEAL_FUSION.

Fig. 5 illustrates that CEAL_LC, CEAL_MS, and
CEAL_EN have a similar performance, while CEAL_FUSION
performs better. This demonstrates that the informative sample
selection criterion still plays an important role in improving the
recognition accuracy. Though being a minority, the informative
samples have a great potential impact on the classifier.

C. Reliability of CEAL

From the above experiments, we know that the performance
of our framework is better than those of other methods,
which shows the superiority of introducing the majority
of pseudolabeled samples. But how does the accuracy of
assigning the pseudo-label to those high-confidence samples?
In order to demonstrate the reliability of our proposed CEAL
framework, we also evaluate the average error in selecting
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Comparison between different informative sample selection criteria and their fusion (CEAL_FUSION) on (a) CACD and (b) Caltech-256 data sets.
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Fig. 6. Average error rate of the pseudolabels of high-confidence samples
assigned by the heuristic strategy on the CACD and Caltech-256 data sets
experiments. The vertical axes represent the average error rate and the hori-
zontal axes represent the learning iteration. Our proposed CEAL framework
can assign reliable pseudolabels to the unlabeled samples under acceptable
average error rate.

high-confidence samples. Fig. 6 shows the error rate of
assigning pseudolabel along with the learning iteration.
As one can see, the average error rate is quite low (say less
than 3% on the CACD data set and less than 5.5% on the
Caltech-256 data set) even at early iterations. Hence, our
proposed CEAL framework can assign reliable pseudolabels
to the unlabeled samples under acceptable average error rate
along with the learning iteration.

D. Sensitivity of High-Confidence Threshold

Since the training phase of deep CNNs is time consuming,
it is not affordable to employ a try and error approach
to set the threshold for defining high-confidence samples.
We further analyze the sensitivity of the threshold parame-
ters 0 (threshold) and dr (threshold decay rate) on our system
performance on the CACD data set using CEAL_EN. While
analyzing the sensitivity of the parameter J on our system, we
fix the decrease rate dr to 0.0033. We fix the threshold o
to 0.05 when analyzing the sensitivity of dr. The results
of the sensitivity analysis of ¢ (range 0.045 to 0.1) are
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Fig. 7. Sensitivity analysis of heuristic threshold ¢ (top) and decay
rate dr (bottom). One can observe that these parameters do not substantially
affect the overall system performance.

shown in the top of Fig. 7, while the sensitivity analysis of
dr (range 0.001 to 0.0035) is shown in the bottom of Fig. 7.
Note that the test range of ¢ and dr is set to ensure
the majority of high confidence assumption of this paper.
Though the range of {J, dr} seems to be narrow from the
value, it leads to a significant difference: about 10%—-60%
samples are pseudolabeled in high-confidence sample selec-
tion. The lower standard deviation of the accuracy in Fig. 7
proves that the choice of these parameters does not signifi-
cantly affect the overall system performance.

V. CONCLUSION

In this paper, we propose a CEAL framework for deep
image classification tasks, which employs a complementary
sample selection strategy: progressively select the minority
of most informative samples and pseudolabel the majority
of high-confidence samples for model updating. In such
a holistic manner, the minority of labeled samples benefit
the decision boundary of classifier and the majority of
pseudolabeled samples provide sufficient training data for
robust feature learning. Extensive experiment results on two
public challenging benchmarks justify the effectiveness of
our proposed CEAL framework. In future work, we plan
to apply our framework on more challenging large-scale
object recognition tasks (e.g., 1000 categories in ImageNet).
And we plan to incorporate more persons from the
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CACD data set to evaluate our framework. Moreover, we plan
to generalize our framework into other multilabel object
recognition tasks (e.g., 20 categories in PASCAL VOC).
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