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Carnegie Mellon University

{lgui,yuxiongw,xiaodan1,moura}@andrew.cmu.edu

Abstract. We explore an approach to forecasting human motion in a few mil-

liseconds given an input 3D skeleton sequence based on a recurrent encoder-

decoder framework. Current approaches suffer from the problem of prediction

discontinuities and may fail to predict human-like motion in longer time hori-

zons due to error accumulation. We address these critical issues by incorporat-

ing local geometric structure constraints and regularizing predictions with plau-

sible temporal smoothness and continuity from a global perspective. Specifically,

rather than using the conventional Euclidean loss, we propose a novel frame-

wise geodesic loss as a geometrically meaningful, more precise distance mea-

surement. Moreover, inspired by the adversarial training mechanism, we present

a new learning procedure to simultaneously validate the sequence-level plausi-

bility of the prediction and its coherence with the input sequence by introducing

two global recurrent discriminators. An unconditional, fidelity discriminator and

a conditional, continuity discriminator are jointly trained along with the predic-

tor in an adversarial manner. Our resulting adversarial geometry-aware encoder-

decoder (AGED) model significantly outperforms state-of-the-art deep learning

based approaches on the heavily benchmarked H3.6M dataset in both short-term

and long-term predictions.
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1 Introduction

Consider the following scenario: a robot is working in our everyday lives and interacting

with humans, for example shaking hands during socialization or delivering tools to a

surgeon when assisting a surgery. In a seamless interaction, the robot is supposed to not

only recognize but also anticipate human actions, such as accurately predicting limbs’

pose and position, so that it can respond appropriately and expeditiously [25, 17]. Such

an ability of forecasting how a human moves or acts in the near future conditioning on

a series of historical movements is typically addressed in human motion prediction [12,

24, 31, 8, 13, 4, 16, 17]. In addition to the above scenario of human-robot interaction

and collaboration [28], human motion prediction also has great application potential

in various tasks in computer vision and robotic vision, such as action anticipation [27,

20], motion generation for computer graphics [29], and proactive decision-making in

autonomous driving systems [35].

Modeling motion dynamics: Predicting human motion for diverse actions is chal-

lenging yet under-explored, because of the uncertainty of human conscious movements
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Fig. 1: Human motion prediction task. Top: the conditioning sequence and the groundtruth of

the predicted sequence. Middle two: state-of-the-art prediction results (sampling-based loss and

residual sup. [31]). Bottom: our prediction. The groundtruth and the input sequences are shown

in black. Given the black seed motion frame in the middle, predictions are shown in color. As

highlighted in the rectangles, a severe discontinuity exists between the seed motion frame and the

first predicted frame for sampling-based loss (2nd row); the prediction is further away from the

groundtruth than ours (3rd row, left) and error accumulates in long time horizons (3rd row, right)

for residual sup. Our single model consistently outperforms the baselines and produces low-error,

smooth, and human-like prediction. Best viewed in color with zoom.

and the difficulty of modeling long-term motion dynamics. State-of-the-art deep learn-

ing based approaches typically formulate the task as a sequence-to-sequence problem,

and solve it by using recurrent neural networks (RNNs) to capture the underlying tem-

poral dependencies in the sequential data [31]. Despite their extensive efforts on explor-

ing different types of encoder-decoder architectures (e.g., encoder-recurrent-decoder

(ERD) [12] and residual [31] architectures), they can only predict periodic actions well

(e.g., walking) and show unsatisfactory performance on longer-term aperiodic actions

(e.g., discussion), due to error accumulation and severe motion jump between the pre-

dicted and input sequences, as shown in Figure 1. One of the main reasons is that the

previous work only considers the frame-wise correctness based on a Euclidean metric

at each recurrent training step, while ignoring the critical geometric structure of motion

frames and the sequence-level motion fidelity and continuity from a global perspective.

Human-like motion prediction: In this work, we aim to address human-like mo-

tion prediction so that the predicted sequences are more plausible and temporally co-

herent with past sequences. By leveraging the local frame-wise geometric structure and

addressing the global sequence-level fidelity and continuity, we propose a novel model

that significantly improves the performance of short-term 3D human motion prediction

as well as generates realistic periodic and aperiodic long-term motion.

Geometric structure aware loss function at the frame level: Although the motion

frames are represented as 3D rotations between joint angles, the standard Euclidean

distance is commonly used as the loss function when regressing the predicted frames

to the groundtruth during encoder-decoder training. The Euclidean loss fails to exploit

the intrinsic geometric structure of 3D rotations, making the prediction inaccurate and

even frozen to some mean pose for long-term prediction [24, 32]. Our key insight is

that the matrix representation of 3D rotations belongs to Special Orthogonal Group
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SO(3) [43], an algebraic group with a Riemannian manifold structure. This manifold

structure allows us to define a geodesic distance that is the shortest path between two

rotations. We thus introduce a novel geodesic loss between the predicted motion and the

groundtruth motion to replace the Euclidean loss. This geometrically more meaningful

loss leads to more precise distance measurement and is computationally inexpensive.

Adversarial training at the sequence level: To achieve human-like motion predic-

tion, the model is supposed to be able to validate its entire generated sequence. Unfortu-

nately, such a mechanism is missing in the current prediction framework. In the spirit of

generative adversarial networks (GANs) [14], we introduce two global discriminators

to validate the prediction while casting our predictor as a generator, and we jointly train

them in an adversarial manner. To deal with sequential data, we design our discrimina-

tors as recurrent networks. The first unconditional, fidelity discriminator distinguishes

the predicted sequence from the groundtruth sequence. The second conditional, con-

tinuity discriminator distinguishes between the long sequences that are concatenated

from the input sequence and the predicted or groundtruth sequence. Intuitively, the fi-

delity discriminator aims to examine whether the generated motion sequence is human-

like and plausible overall, and the continuity discriminator is responsible for checking

whether the predicted motion sequence is coherent with the input sequence without a

noticeable discontinuity between them.

Our contributions are three-fold. (1) We address human-like motion prediction by

modeling both the frame-level geometric structure and the sequence-level fidelity and

continuity. (2) We propose a novel geodesic loss and demonstrate that it is more suitable

to evaluate 3D motion as the regression loss and is computationally inexpensive. (3)

We introduce two complementary recurrent discriminators tailored for the motion pre-

diction task, which are jointly trained along with the geometry-aware encoder-decoder

predictor in an adversarial manner. Our full model, which we call adversarial geometry-

aware encoder-decoder (AGED), significantly surpasses the state-of-the-art deep learn-

ing based approaches when evaluated on the heavily benchmarked, large-scale motion

capture (mocap) H3.6M dataset [22]. Our approach is also general and can be poten-

tially incorporated into any encoder-decoder based prediction framework.

2 Related Work

Human motion prediction: Human motion prediction is typically addressed by state-

space models. Traditional approaches focus on bilinear spatio-temporal basis mod-

els [1], hidden Markov models [7], Gaussian process latent variable models [53, 50],

linear dynamic models [38], and restricted Boltzmann machines [48, 47, 45, 49]. More

recently, driven by the advances of deep learning architectures and large-scale public

datasets, various deep learning based approaches have been proposed [12, 24, 31, 8, 13,

4, 16], which significantly improve the prediction performance on a variety of actions.

RNNs for motion prediction: In addition to their success in machine transla-

tion [26], image caption [58], and time-series prediction [57, 52], RNNs [44, 55, 54]

have become the widely used framework for human motion prediction. Fragkiadaki

et al. [12] propose a 3-layer long short-term memory (LSTM-3LR) network and an

encoder-recurrent-decoder (ERD) model that use curriculum learning to jointly learn a
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representation of pose data and temporal dynamics. Jain et al. [24] introduce high-level

semantics of human dynamics into RNNs by modeling human activity with a spatio-

temporal graph. These two approaches design action-specific models and restrict the

training process on subsets of the mocap dataset. Some recent work explores motion

prediction for general action classes. Ghosh et al. [13] propose a DAE-LSTM model

that combines an LSTM-3LR with a dropout autoencoder to model temporal and spa-

tial structures. Martinez et al. [31] develop a simple residual encoder-decoder and multi-

action architecture by using one-hot vectors to incorporate the action class information.

The residual connection exploits first-order motion derivatives to decrease the motion

jump between the predicted and input sequences, but its effect is still unsatisfactory.

Moreover, error accumulation has been observed in the predicted sequence, since RNNs

cannot recover from their own mistake [5]. Some work [12, 24] alleviates this problem

via a noise scheduling scheme [6] by adding noise to the input during training; neverthe-

less, this scheme makes the prediction discontinuous and makes the hyper-parameters

difficult to tune. While our approach is developed in deterministic motion prediction, it

can be potentially extended to probabilistic prediction [38, 53, 4].

Loss functions in prediction tasks: The commonly used Euclidean loss (i.e., the ℓ2
loss, and to a lesser extent ℓ1 loss) [24, 31] in prediction tasks can cause the model to av-

erage between two possible futures [32] and thus result in blurred video prediction [34]

or unrealistic mean motion prediction [24], increasingly worse when predicting further

in the future. An image gradient difference loss is proposed to address this issue for

pixel-level video prediction [32], which is not applicable in our task. Here, by taking

into the account the intrinsic geometric structure of the motion frames, we adopt a more

effective geodesic metric [21, 18] to measure 3D rotation errors.

GANs: GANs [14, 2] have shown impressive performance in various generation

tasks [10, 40, 60, 32, 51, 30, 41, 56]. Rather than exploring different objectives in GANs,

we investigate how to improve human motion prediction by leveraging the adversarial

training mechanism. Our model is different from standard GANs in three ways. (1)

Architecture: the discriminators in GANs are mainly convolutional or fully-connected

networks [32, 59, 23, 4]; by contrast, our generator and discriminators are both with

RNN structures so as to deal with sequences. (2) Training procedure: two discriminators

are used at the same time to address the fidelity and continuity challenges, respectively.

(3) Loss function: we combine a geodesic (regression) loss with GAN adversarial losses

to benefit from both of them. From a broader perspective, our approach can be viewed

as imposing (and yet not explicitly enforcing) certain regularizations on the predicted

motion, which is loosely related to the classical smoothing, filtering, and prediction

techniques [11] but is more trainable and adaptable to real human motion statistics.

3 Adversarial Geometry-Aware Encoder-Decoder Model

Figure 2 illustrates the framework of our adversarial geometry-aware encoder-decoder

(AGED) model for human motion prediction. The encoder and decoder constitute the

predictor, which is trained to minimize the distance between the predicted future se-

quence and the groundtruth sequence. The standard Euclidean distance is commonly

used as the regression loss function. However, it makes the predicted skeleton non-
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Fig. 2: An overview of our adversarial geometry-aware encoder-decoder (AGED) model. Blue-

red skeletons represent the input sequence and groundtruth, and green-purple skeletons represent

the prediction. An input sequence is fed into a sequence-to-sequence encoder-decoder network to

produce the output sequence (Fig. (b)). We propose a frame-wise geodesic loss as a more precise

distance measurement to regress the predicted sequence to the groundtruth (Fig. (a)). We fur-

ther introduce two global recurrent discriminators (an unconditional, fidelity discriminator and a

conditional, continuity discriminator) to validate the sequence-level plausibility of the prediction

and its coherence with the input sequence (Fig. (c)). By jointly optimizing the geometry-aware

predictor and the two discriminators in an adversarial manner, we generate the final prediction.

smooth and discontinuous for short-term prediction and frozen to some mean pose for

long-term prediction. To deal with such limitations, we introduce an adversarial training

process and new loss functions at both the local frame and global sequence levels.

Problem Formulation. We represent human motion as sequential data. Given a mo-

tion sequence, we predict possible short-term and long-term motion in the future. That

is, we aim to find a mapping P from an input sequence to an output sequence. The in-

put sequence of length n is denoted as X = {x1,x2, ...,xn}, where xi ∈ R
K (i ∈ [1, n])

is a mocap vector that consists of a set of 3D body joint angles with their exponen-

tial map representations [33] and K is the number of joint angles. Consistent with [48,

12, 31], we standardize the inputs and focus on relative rotations between joints, since

they contain information of the actions. We predict the future motion sequence in

the next m timesteps as the output, denoted as X̂ = {x̂n+1, x̂n+2, ..., x̂n+m}, where

x̂j ∈ R
K (j ∈ [n+ 1, n+m]) is the predicted mocap vector at the j-th timestep. The

groundtruth of the m timesteps is given as Xgt = {xn+1,xn+2, ...,xn+m}.

3.1 Geometry-Aware Encoder-Decoder Predictor

Learning the predictor, i.e., the mapping P from the input to output sequences, is cast

as solving a sequence-to-sequence problem based on an encoder-decoder network ar-
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chitecture [46, 31]. The encoder learns a hidden representation from the input sequence.

The hidden representation and a seed motion frame are then fed into the decoder to pro-

duce the output sequence. Other modifications such as attention mechanisms [3] and

bi-directional encoders [42] could be also incorporated into this general architecture.

We use a similar network architecture as in [31] for our predictor P , which has

achieved the state-of-the-art performance on motion prediction. The encoder and de-

coder consist of gated recurrent unit (GRU) [9] cells instead of LSTM [19] or other

RNN variants. We use a residual connection to model the motion velocities rather than

operating with absolute angles, given that the residual connection has been shown to

improve prediction smoothness [31]. Each frame of the input sequence, concatenated

with a one-hot vector which indicates the action class of the current input, is fed into

the encoder. The decoder takes the output of itself as the next timestep input.

Geodesic loss: At the local frame level, we introduce a geodesic loss to regress the

predicted sequence to the groundtruth sequence frame by frame. Given that the motion

frame is represented as 3D rotations of all joint angles, we are interested in measuring

the distance between two 3D rotations. The widespread measurement is the Euclidean

distance [12, 24, 31]. However, the crucial geometric structure of 3D rotations is ig-

nored, leading to inaccurate prediction [24, 32].

To address such an issue, we introduce a more precise distance measurement and

define the new loss accordingly. For a rotation with its Euler angles θ = (α, β, γ)

about rotation axis u = (u1, u2, u3)
T , the corresponding rotation matrix is defined as

R = [θ · u]×, where · and × denote the inner and outer products, respectively. Such 3D

rotation matrices form Special Orthogonal Group SO(3) of orthogonal matrices with

determinant 1 [43]. SO(3) is a Lie Group, an algebraic group with a Riemannian mani-

fold structure. It is natural to introduce the geodesic distance to quantify the similarity

between two rotations, which is the shortest path between them on the manifold. The

geodesic distance in SO(3) can be defined with the angle between two rotation matrices.
Specifically, given two rotation matrices R̂ and R, the product R̂R

T is the rotation
matrix of the difference angle between R̂ and R. The angle can be calculated using the
logarithm map in SO(3) [43] as

log R̂R
T = A

arcsin
(
‖A‖

2

)

‖A‖
2

, (1)

where A = (a1, a2, a3)
T and is computed from

(
R̂R

T −RR̂
T
)

2
=




0 −a3 a2

a3 0 −a1

−a2 a1 0



 . (2)

The geodesic distance between R̂ and R is defined as

dG

(
R̂,R

)
=

∥∥∥log
(
R̂R

T
)∥∥∥

2

. (3)

Based on this geodesic distance, we now define a geodesic loss Lgeo between the pre-

diction X̂ and the groundtruth Xgt. We first revert the exponential map representations

x̂
k
j , xk

j of the k-th joint in the j-th frame to the Euler format θ̂k
j , θk

j [43], respectively,
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and calculate their corresponding rotation matrices R̂
k
j , Rk

j , where k ∈ [1,K/3], K/3 is
the number of joints (since each joint has 3D joint angles), and j ∈ [n+ 1, n+m]. By
summing up the geodesic distances between the predicted frames and the groundtruth
frames, we obtain the geodesic loss in the form of

Lgeo (P) =

j=n+m∑

j=n+1

k=K/3∑

k=1

dG

(
R̂

k
j ,R

k
j

)
. (4)

The gradient of Eqn. (4) can be computed using automatic gradient computations

implemented in the software package such as PyTorch [36] given the forward function.

Note that there are other distance metrics that can be defined in SO(3) as well, includ-

ing the one using quaternion representations [21, 18]. Regarding computing distances,

the quaternion based metric is functionally equivalent to our metric [21, 18]. Regarding

optimization and computing gradient as in our case, our current experimental observa-

tions indicated that the quaternion based metric led to worse results, possibly due to the

need for renormalization of quaternions during optimization [39, 15].

3.2 Fidelity and Continuity Discriminators

The sequence-to-sequence predictor architecture explores the temporal information of

human motion and produces coarsely plausible motion. However, as shown in Figure 1,

we have observed that there exist some discontinuities between the last frames of the

input sequences and the first predicted frames. For long-term prediction, the predicted

motion tends to be less realistic due to error accumulation. Such phenomena were also

observed in [31]. This is partially because using a frame-wise regression loss solely

cannot check the fidelity of the entire predicted sequence from a global perspective.

Inspired by the adversarial training mechanism in GANs [14, 2], we address this issue

by introducing two sequence-level discriminators.

A standard GAN framework consists of (1) a generator that captures the data dis-

tribution, and (2) a discriminator that estimates the probability of a sample being real

or generated. The generator is trained to generate samples to fool the discriminator and

the discriminator is trained to distinguish the generation from the real samples.

Accordingly, in our model we view the encoder-decoder predictor as a generator,
and introduce two discriminators. An unconditional, fidelity discriminator Df distin-

guishes between “short” sequences X̂ and Xgt. A conditional, continuity discriminator

Dc distinguishes between “long” sequences {X, X̂} and {X,Xgt}. Their outputs are
the probabilities of their inputs to be “real” rather than “fake”. Intuitively, the fidelity
discriminator evaluates how smooth and human-like the predicted sequence is and the
continuity discriminator checks whether the motion of the predicted sequence is coher-
ent with the input sequence. The quality of the predictor P is then judged by evaluating
how well X̂ fools Df and how well the concatenated sequence {X, X̂} fools Dc. More
formally, following [14], we solve the minimax optimization problem:

argmin
P

max
Df ,Dc

Lf
adv (P,Df ) + Lc

adv (P,Dc) , (5)
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where

Lf
adv (P,Df ) =EXgt [log (Df (Xgt))] + EX [log (1−Df (P (X)))] , (6)

Lc
adv (P,Dc) =E{X,Xgt} [log (Dc({X,Xgt}))] + EX [log (1−Dc({X,P(X)}))] , (7)

and the distributions E(·) are over the training motion sequences. Unlike the previ-

ous work [32, 59, 4], we design our discriminators as recurrent networks to deal with

sequential data. Each of the discriminators consists of GRU cells to extract a hidden

representation of its input sequence. A fully-connected layer with sigmoid activation is

followed to output the probability that the input sequence is real.

Our entire model thus consists of a single predictor and two discriminators, ex-

tending the generator and discriminator in GANs with recurrent structures. Note that

our “generator” is actually a predictor, which is the RNN encoder-decoder without any

noise inputs. In this sense, the GAN generator maps from noise space to data space,

whereas our predictor maps from past sequences to future sequences. During training,

the two discriminators are learned jointly.

3.3 Joint Loss Function and Adversarial Training

We integrate the geodesic (regression) loss and the two adversarial losses, and obtain
the optimal predictor by jointly optimizing the following minimax objective function:

P∗ = argmin
P

max
Df ,Dc

λ
(
Lf

adv (P,Df ) + Lc
adv (P,Dc)

)
+ Lgeo (P) , (8)

where λ is the trade-off hyper-parameter that balances the two types of losses. The

predictor P tries to minimize the objective against the adversarial discriminators Df

and Dc that aim to maximize it.

Consistent with the recent work [37, 23], our combination of a regression loss and

GAN adversarial losses provides some complementary benefits. On the one hand, GAN

tends to learn a better representation and tries to make prediction look real, which is

difficult to achieve using standard hand-crafted metrics. On the other hand, GAN is well

known to be hard to train, and easily gets stuck into local minimum (i.e., not learning

the distribution). By contrast, the regression loss is responsible for capturing the overall

motion geometric structure and explicitly aligning the prediction with the groundtruth.

Implementation Details. We use a similar predictor architecture as in [31] for its

state-of-the-art performance. The encoder and decoder consist of a single GRU cell [9]

with hidden size 1,024, respectively. Consistent with [31], we found that GRUs are

computationally less-expensive and a single GRU cell outperforms multiple GRU cells.

In addition, it is easier to train and avoids over-fitting compared with the deeper models

in [12, 24]. We use linear mappings between the K-dim input/output joint angles and

the 1,024-dim GRU hidden state. Our two discriminators have the same architectures.

For each of them, we also use a single GRU cell. Note that the frames of the sequence

being evaluated are fed into the corresponding discriminator sequentially, making its

number of parameters unaffected by the sequence length. Our entire model has the



Adversarial Geometry-Aware Human Motion Prediction 9

same inference time as the baseline model with the plain predictor [31]. The hyper-

parameter λ in Eqn. (8) is set as 0.6 by cross-validation. We found that the performance

is generally robust with its value ranging from 0.45 to 0.75. We use a learning rate

0.005 and a batch size 16, and we clip the gradient to a maximum ℓ2-norm of 5. We use

PyTorch [36] to train our model and run 50 epochs. It takes 35ms for forward processing

and back-propagation per iteration on an NVIDIA Titan GPU.

4 Experiments

In this section, we explore the use of our adversarial geometry-aware encoder-decoder

(AGED) model for human motion prediction on the heavily benchmarked motion cap-

ture (mocap) dataset [22]. Consistent with the recent work [31], we mainly focus on

short-term prediction (< 500ms). We begin with descriptions of the dataset, baselines,

and evaluation protocols. Through extensive evaluation, we show that our approach

achieves the state-of-the-art short-term prediction performance both quantitatively and

qualitatively. We then provide ablation studies, verifying that different losses and mod-

ules are complementary with each other for temporal coherent and smooth prediction.

Finally, we investigate our approach in long-term prediction (> 500ms) and demon-

strate its more human-like prediction results compared with baselines.

Dataset: We focus on the Human 3.6M (H3.6M) dataset [22], a large-scale publicly

available dataset including 3.6 million 3D mocap data. This is an important and widely

used benchmark in human motion analysis. H3.6M includes seven actors performing

15 varied activities, such as walking, smoking, engaging in a discussion, and taking

pictures. We follow the standard experimental setup in [12, 24, 31]: we down-sample

H3.6M by two, train on six subjects, and test on subject five. For short-term prediction,

we are given 50 mocap frames (2 seconds in total) and forecast the future 10 frames

(400ms in total). For long-term prediction, we are given the same 50 mocap frames and

forecast the future 25 frames (1 seconds in total) or even more (4 seconds in total).

Baselines: We compare against recent deep RNNs based approaches: (1) LSTM-

3LR and ERD [12], (2) SRNN [24], (3) DAE-LSTM [13], and (4) residual sup. and

sampling-based loss [31]. Following [31], we also consider a zero-velocity baseline

that constantly predicts the last observed frame. As shown in [31], this is a simple but

strong baseline: none of these learning based approaches quantitatively outperformed

zero-velocity consistently, especially in short-term prediction scenarios.

Evaluation protocols: We evaluate our approach under three metrics and show both

quantitative and qualitative comparisons:

– (Quantitative mean angle error) For a fair comparison, we evaluate the performance

using the same error measurement on subject five as in [12, 24, 31], which is the

average mean square error (MSE) between the predicted frames and the groundtruth

frames in the angle space. We exclude the translation and rotation of the whole

body, since this information is independent of the actions themselves.

– (Human evaluation) We also ran double-blind user studies to gauge the plausibility

of the prediction as a response to the user. We randomly sample two input sequences

from each of the 15 activities on H3.6M, leading to 30 input sequences. We use our

model as well as sampling-based loss and residual sup. [31] (which are the top
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Table 1: Quantitative comparisons of mean angle error between our AGED model and state-of-

the-art approaches for short-term motion prediction on 4 representative activities of the H3.6M

dataset. Our model variants include AGED with only the geodesic loss, AGED with two discrim-

inators (the adversarial losses and the conventional Euclidean loss), and full AGED. Our AGED

consistently outperforms the existing deep learning based approaches. While the zero-velocity

baseline has slightly better performance on smoking at 80ms prediction, ours outperforms it in

all the other cases

Walking Eating Smoking Discussion

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Zero-velocity [31] 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04
ERD [12] 1.30 1.56 1.84 - 1.66 1.93 2.28 - 2.34 2.74 3.73 - 2.67 2.97 3.23 -

LSTM-3LR [12] 1.18 1.50 1.67 - 1.36 1.79 2.29 - 2.05 2.34 3.10 - 2.25 2.33 2.45 -

SRNN [31] 1.08 1.34 1.60 - 1.35 1.71 2.12 - 1.90 2.30 2.90 - 1.67 2.03 2.20 -

DAE-LSTM [13] 1.00 1.11 1.39 - 1.31 1.49 1.86 - 0.92 1.03 1.15 - 1.11 1.20 1.38 -

Sampling-based loss [31] 0.92 0.98 1.02 1.20 0.98 0.99 1.18 1.31 1.38 1.39 1.56 1.65 1.78 1.80 1.83 1.90
Residual sup. [31] 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09

AGED w/ geo (Ours) 0.28 0.42 0.66 0.73 0.22 0.35 0.61 0.74 0.30 0.55 0.98 0.99 0.30 0.63 0.97 1.06
AGED w/ adv+euc (Ours) 0.27 0.42 0.62 0.71 0.22 0.32 0.53 0.67 0.28 0.47 0.90 0.86 0.28 0.60 0.78 0.87
AGED w/ adv+geo (Ours) 0.22 0.36 0.55 0.67 0.17 0.28 0.51 0.64 0.27 0.43 0.82 0.84 0.27 0.56 0.76 0.83

performing baselines as shown below) to generate both short-term and long-term

predictions. We thus have 120 short-term motion videos and 120 long-term videos

in total, including the short-term and long-term groundtruth videos. We design pair-

wise evaluations and 25 judges are asked to watch randomly chosen pairs of videos

and then choose the one that is considered to be more realistic and reasonable.

– (Qualitative visualization) Following [12, 24, 13, 31], we visualize some represen-

tative predictions frame by frame.

For short-term prediction in which the motion is more certain, we evaluate using all

the three metrics. For long-term prediction which are more difficult to evaluate quanti-

tatively and might not be unique [31], we mainly focus on the user studies and visual-

izations, and show some quantitative comparisons for reference.

4.1 Short-Term Motion Prediction

Prediction for less than 500ms is typically considered as short-term prediction. Within

this time range, motion is more certain and constrained by physics, and we thus focus

on measuring the prediction error with respect to the groundtruth, following [12, 24,

31]. In these experiments, the network is trained to minimize the loss over 400ms.

Comparisons with state-of-the-art deep learning baselines: Table 1 shows the

quantitative comparisons with the full set of deep learning baselines on 4 representative

activities, including walking, smoking, eating, and discussion. Table 2 compares our

approach with the best performing residual sup. baseline on the remaining 11 activi-

ties. Compared with residual sup. that uses a similar predictor network but a Euclidean

loss, our geodesic loss generates more precise prediction. Our discriminators further

greatly boost the performance, validating that the high-level fidelity examination of the

entire predicted sequence is essential for smooth and coherent motion prediction. Their
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Table 2: Quantitative comparisons of mean angle error between our AGED model and top per-

forming baselines for short-term motion prediction on the remaining 11 activities of the H3.6M

dataset. Our AGED model consistently outperforms these baselines in almost all the scenarios

Directions Greeting Phoning Posing Purchases Sitting

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Zero-velocity [31] 0.39 0.59 0.79 0.89 0.54 0.89 1.30 1.49 0.64 1.21 1.65 1.83 0.28 0.57 1.13 1.37 0.62 0.88 1.19 1.27 0.40 1.63 1.02 1.18
Residual sup. [31] 0.26 0.47 0.72 0.84 0.75 1.17 1.74 1.83 0.23 0.43 0.69 0.82 0.36 0.71 1.22 1.48 0.51 0.97 1.07 1.16 0.41 1.05 1.49 1.63

AGED w/ geo (Ours) 0.26 0.46 0.71 0.81 0.61 0.95 1.44 1.61 0.23 0.42 0.61 0.79 0.34 0.70 1.19 1.40 0.46 0.89 1.06 1.11 0.46 0.87 1.23 1.51
AGED w/ adv+euc (Ours) 0.26 0.42 0.66 0.73 0.58 0.88 1.31 1.49 0.21 0.37 0.51 0.69 0.34 0.62 1.15 1.39 0.49 0.83 1.05 1.12 0.44 0.77 1.08 1.21
AGED w/ adv+geo (Ours) 0.23 0.39 0.63 0.69 0.56 0.81 1.30 1.46 0.19 0.34 0.50 0.68 0.31 0.58 1.12 1.34 0.46 0.78 1.01 1.07 0.41 0.76 1.05 1.19

Sitting Down Taking Photo Waiting Walking Dog Walking Together Average

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Zero-velocity [31] 0.39 0.74 1.07 1.19 0.25 0.51 0.79 0.92 0.34 0.67 1.22 1.47 0.60 0.98 1.36 1.50 0.33 0.66 0.94 0.99 0.40 0.71 1.07 1.21
Residual sup. [31] 0.39 0.81 1.40 1.62 0.24 0.51 0.90 1.05 0.28 0.53 1.02 1.14 0.56 0.91 1.26 1.40 0.31 0.58 0.87 0.91 0.36 0.67 1.02 1.15

AGED w/ geo (Ours) 0.38 0.77 1.18 1.41 0.24 0.52 0.92 1.01 0.31 0.64 1.08 1.12 0.51 0.87 1.21 1.33 0.29 0.51 0.72 0.75 0.32 0.62 0.96 1.07
AGED w/ adv+euc (Ours) 0.34 0.67 1.01 1.11 0.24 0.49 0.84 0.97 0.26 0.54 1.05 1.28 0.55 0.84 1.16 1.30 0.24 0.44 0.60 0.64 0.33 0.58 0.88 1.00
AGED w/ adv+geo (Ours) 0.33 0.62 0.98 1.10 0.23 0.48 0.81 0.95 0.24 0.50 1.02 1.13 0.50 0.81 1.15 1.27 0.23 0.41 0.56 0.62 0.31 0.54 0.85 0.97

…

…

…

…

0 400msEating

…

…

…

…

0 400msDirections

Fig. 3: Short-term motion prediction visualizations. From top to bottom: groundtruth, sampling-

based loss [31], residual sup. [31], and our AGED. As highlighted in the rectangles, discontinu-

ities exit between the inputs and the first predicted frames (2nd rows); the predictions are further

away from the groundtruth than ours (3rd rows). ours AGED produces lower-error, less-jump,

and more smooth predictions. Best viewed in color with zoom.

combination achieves the best performance and makes our AGED model consistently

outperform the existing deep learning based approaches in all the scenarios.

Comparisons with the zero-velocity baseline: Tables 1 and 2 also summarize the

comparisons with the zero-velocity approach. Although zero-velocity does not produce

interesting motion, it is difficult for the existing deep learning based approaches to

outperform it quantitatively in short-term prediction, mainly on complicated actions

(e.g., smoking) and highly aperiodic actions (e.g., sitting), which is consistent with the

observations in [31]. Our AGED model shows some promising progress. (1) For com-

plicated motion prediction, zero-velocity outperforms the other baselines, whereas our

AGED outperforms zero-velocity, due to our adversarial discriminators. This type of

action consists of small movements in upper-body, which is difficult to model as the

learning based baselines only verify frame-wise predictions and ignore their tempo-

ral dependencies. By contrast, our AGED, equipped with a fidelity discriminator and

a continuity discriminator, is able to check globally how smooth and human-like the

entire generated sequence is, leading to significant performance improvement. (2) For

highly aperiodic motion prediction, because these actions are very difficult to model,

zero-velocity outperforms all the learning methods.

Qualitative visualizations: Figure 3 visualizes the motion prediction results. We

compare with residual sup., the best performing baseline as shown in Tables 1 and 2.
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Table 3: Human voting results of short-term and long-term prediction videos. Each number repre-

sents the percentage that our prediction or the groundtruth is chosen from a pair of predictions as

being more realistic and reasonable. The first row shows the percentages that our predictions are

chosen against the groundtruth and baseline predictions. As a reference, the second row shows

the percentages for the groundtruth. Our AGED predictions are on par with the groundtruth and

significantly outperform baseline models

Short-term Long-term

Model pair Ours Groundtruth
sampling-based residual

Ours Groundtruth
sampling-based residual

loss [31] sup. [31] loss [31] sup. [31]

Ours vs. n/a 53.3% 98.6% 69.6% n/a 48.7% 83.5% 93.1%

Groundtruth vs. 46.7% n/a 99.7% 75.7% 51.3% n/a 83.7% 94.9%

Table 4: Ablation analysis for short-term prediction. Some of the results are included from Table 1

for completeness. We compare our geodesic loss with the conventional Euclidean loss as the pre-

dictor regression loss and evaluate the impact of different discriminators and their combinations.

Our full AGED model achieves the best performance, showing that the different components

complement each other

milliseconds Walking Eating Smoking Discussion

reg loss fid dis con dis 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

n/a X X 1.35 1.33 1.31 1.55 1.29 1.22 1.38 1.41 1.39 1.51 1.53 1.69 1.37 1.22 1.15 1.51
euc 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09
euc X 0.27 0.43 0.66 0.74 0.23 0.35 0.58 0.71 0.28 0.52 0.94 0.90 0.42 0.62 0.87 0.93
euc X 0.26 0.42 0.63 0.71 0.22 0.34 0.54 0.68 0.28 0.48 0.92 0.91 0.39 0.63 0.86 0.96
euc X X 0.27 0.42 0.62 0.71 0.22 0.32 0.53 0.67 0.28 0.47 0.90 0.86 0.28 0.60 0.78 0.87
geo 0.28 0.42 0.66 0.73 0.22 0.35 0.61 0.74 0.30 0.55 0.98 0.99 0.30 0.63 0.97 1.06
geo X 0.24 0.39 0.62 0.71 0.22 0.32 0.56 0.68 0.27 0.46 0.89 0.87 0.33 0.59 0.80 0.91
geo X 0.24 0.39 0.58 0.68 0.21 0.30 0.52 0.66 0.27 0.45 0.84 0.86 0.34 0.57 0.81 0.90

geo X X 0.22 0.36 0.55 0.67 0.17 0.28 0.51 0.64 0.27 0.43 0.82 0.84 0.27 0.56 0.76 0.83

Both our AGED model and residual sup. predict realistic short-term motion. One no-

ticeable difference between them is the degree of jump (i.e., discontinuity) between the

last input frame and the first predicted frame. The jump in our AGED is relatively small,

which is consistent with its lower prediction error and due to the introduced continuity

discriminator. We also include sampling-based loss, a variant of residual sup., which

shows superior qualitative visualization in long-term prediction. We observe severe dis-

continuities in sampling-based loss. More comparisons are shown in Figure 1.

User studies: Our model again outperforms the baselines by a large margin under

human evaluation, as shown in Table 3. The first row summarizes the success rates of

our AGED against the groundtruth and baselines. For short-term prediction, we ob-

serve that (1) our AGED has a success rate of 53.3% against the groundtruth, showing

that our predictions are on par with the groundtruth; and (2) our AGED has a success

rate of 98.6% against sampling-based loss and of 69.6% against residual sup., show-

ing that the judges notice the jump and discontinuities between the baseline predictions

and the input sequences. As a reference, the second row summarizes the success rates

of the groundtruth against all the models, which have similar trends as our rates and

are slightly better. These observations thus validate that users favor more realistic and

plausible motions and our predictions are judged qualitatively realistic by humans.
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Table 5: Representative quantitative comparisons of mean angle error between our AGED model

and state-of-the-art approaches for long-term motion prediction on 4 activities of the H3.6M

dataset. Our AGED model consistently achieves the best performance

Walking Eating Smoking Discussion

milliseconds 560 1000 560 1000 560 1000 560 1000

Zero-velocity [31] 1.35 1.32 1.04 1.38 1.02 1.69 1.41 1.96
ERD [12] 2.00 2.38 2.36 2.41 3.68 3.82 3.47 2.92
LSTM-3LR [12] 1.81 2.20 2.49 2.82 3.24 3.42 2.48 2.93
SRNN [31] 1.90 2.13 2.28 2.58 3.21 3.23 2.39 2.43
DAE-LSTM [13] 1.55 1.39 1.76 2.01 1.38 1.77 1.53 1.73
Sampling-based loss [31] 1.36 1.59 1.48 1.55 1.78 2.31 1.77 1.61
Residual sup. [31] 0.93 1.03 0.95 1.08 1.25 1.50 1.43 1.69

AGED w/ geo (Ours) 0.89 1.02 0.92 1.01 1.15 1.43 1.33 1.56
AGED w/ adv+euc (Ours) 0.87 0.99 0.87 0.96 1.16 1.38 1.31 1.39
AGED w/ adv+geo (Ours) 0.78 0.91 0.86 0.93 1.06 1.21 1.25 1.30

4.2 More Ablation Studies

In addition to the comparisons between the geodesic loss and the adversarial losses in

Tables 1 and 2, we conduct more thorough ablations in Table 4 to understand the impact

of each loss component and their combinations. We can see that our geodesic loss is su-

perior to the conventional Euclidean loss. This observation empirically verifies that the

geodesic distance is a geometrically more meaningful and more precise measurement

for 3D rotations, as also supported by the theoretical analysis in [18, 21, 43]. Moreover,

our full model consistently outperforms its variants in short-term prediction, showing

the effectiveness and complementarity of each component.

4.3 Long-Term Motion Prediction

Long-term prediction (> 500ms) is more challenging than short-term prediction due

to error accumulation and the uncertainty of human motion. Given that long-term pre-

diction is difficult to evaluate quantitatively [31], we mainly focus on the qualitative

comparisons in Figure 4 and the user studies in Table 4. For completeness, we pro-

vide representative quantitative evaluation in Table 5. Here the network is trained to

minimize the loss over 1 second. While residual sup. [31] achieves the best perfor-

mance among the baselines in short-term prediction, it is shown that sampling-based

loss [31], a variant of residual sup. without residual connections and one-hot vector

inputs, qualitatively outperforms it in long-term prediction. We show that our AGED

model consistently outperforms these two baselines in both short-term and long-term

predictions.

Qualitative visualizations: Figure 4 shows some representative comparisons on

discussion and phoning activities, which are challenging aperiodic actions. We observe

that the generated predictions by residual sup. converge to mean poses and the predic-

tions of sampling-based loss often drift away from the input sequences, making them

unrealistic anymore. Our model, however, produces more plausible, continuous, and

human-like prediction in long time horizons (4 seconds).
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…

…

…

…

0 4s
Discussion

…

…

…

…

0 4s
Phoning

Fig. 4: Long-term motion prediction visualizations. From top to bottom for each activity:

groundtruth, sampling-based loss [31], residual sup. [31], and our AGED. As highlighted in the

rectangles, discontinuities exit between the inputs and the first predicted frames (2nd rows, left)

and predictions drift away to unrealistic motions (2nd rows, right); predictions converge to mean

poses (3rd rows). Our AGED produces more realistic, continuous, and human-like predictions.

Best viewed in color with zoom.

User studies: As shown in Table 3, our model significantly improves long-term pre-

diction based on human evaluation. Our AGED has a success rate of 48.7% against the

groundtruth, showing that our predictions are still comparable with the groundtruth.

Moreover, our AGED has success rates of 83.5% and 93.1% against sampling-based

loss and residual sup., respectively, which are much larger margins of improvement

compared with the corresponding rates in short-term prediction. These results demon-

strate that the judges consider that our predictions are more realistic and plausible.

5 Conclusions

We present a novel adversarial geometry-aware encoder-decoder model to address the

challenges in human-like motion prediction: how to make the predicted sequences tem-

porally coherent with past sequences and more realistic. At the frame level, we propose

a new geodesic loss to quantify the difference between the predicted 3D rotations and

the groundtruth. We further introduce two recurrent discriminators, a fidelity discrimi-

nator and a continuity discriminator, to validate the predicted motion sequence from a

global perspective. Training integrates the two objectives and is conducted in an adver-

sarial manner. Extensive experiments on the heavily benchmarked H3.6M dataset show

the effectiveness of our model for both short-term and long-term motion predictions.
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11. Einicke, G.A.: Smoothing, filtering and prediction: Estimating the past, present and future.

InTech (February 2012)

12. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dy-

namics. In: IEEE International Conference on Computer Vision (ICCV). pp. 4346–4354. Las

Condes, Chile (December 2015)

13. Ghosh, P., Song, J., Aksan, E., Hilliges, O.: Learning human motion models for long-term

predictions. In: International Conference on 3D Vision (3DV). pp. 458–466. Qingdao, China

(October 2017)

14. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing

Systems (NIPS). pp. 2672–2680. Montréal, Canada (December 2014)
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