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Learning Collaborative Sparse Representation
for Grayscale-Thermal Tracking
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Abstract— Integrating multiple different yet complementary
feature representations has been proved to be an effective way
for boosting tracking performance. This paper investigates how
to perform robust object tracking in challenging scenarios by
adaptively incorporating information from grayscale and thermal
videos, and proposes a novel collaborative algorithm for online
tracking. In particular, an adaptive fusion scheme is proposed
based on collaborative sparse representation in Bayesian filtering
framework. We jointly optimize sparse codes and the reliable
weights of different modalities in an online way. In addition,
this paper contributes a comprehensive video benchmark, which
includes 50 grayscale-thermal sequences and their ground truth
annotations for tracking purpose. The videos are with high diver-
sity and the annotations were finished by one single person to
guarantee consistency. Extensive experiments against other state-
of-the-art trackers with both grayscale and grayscale-thermal
inputs demonstrate the effectiveness of the proposed tracking
approach. Through analyzing quantitative results, we also pro-
vide basic insights and potential future research directions in
grayscale-thermal tracking.

Index Terms— Collaborative sparse representation,
multi-task modeling, grayscale-thermal tracking benchmark,
adaptive tracking.

I. INTRODUCTION
ESPITE significant progress, visual object tracking using
visible spectrum camera remains a very challenging
task in some complex scenarios, such as low illumination,
background clutters, as well as bad weathers (rain, haze,
smog, etc.). Fortunately, these factors can be addressed by
leveraging the complementary benefits of fusing other modal-
ities [1]. For example, the depth sensors can provide valuable
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additional depth information to substantially improve tracking
results by robust occlusion and model drift handling. However,
these sensors suffer from the limited range (e.g., 4-5 meters
at most).

Thermal infrared cameras, as a kind of passive sensors, can
capture infrared radiation emitted by subjects with a temper-
ature above absolute zero. This type of cameras, originally
developed for military use (e.g., surveillance during night),
has recently become more economically affordable and thus
applied to wide applications [2], [3]. On one hand, these
sensors are more effective than visible spectrum cameras under
poor lighting conditions, and can also overcome the above-
mentioned limitation of depth sensors. On the other hand,
visible spectrum cameras are more effective while separating
two moving subjects are crossing or moving side (or called
“thermal crossover” [4]). Therefore, grayscale and thermal
data can complement information to each other to achieve
robust tracking performance in challenging scenarios [5]-[7].

Focusing on a collaborative model and a comprehen-
sive evaluation benchmark of grayscale-thermal tracking,! we
address following remaining issues in this paper through
existing works.

« How to achieve robust tracking by adaptively exploiting
grayscale and thermal information based on their reli-
ability. Previous works [1], [8] adopted simple weight
schemes to achieve adaptive grayscale-thermal tracking,
which might easily fail in challenging scenarios. Bunyak
et al. [9] employed thermal information to assist grayscale
tracking as it is less sensitive to illumination variations
and shadows. When thermal information is unreliable,
this kind of methods will lead to poor performance.
Recent joint sparse representation methods [4], [10] pre-
sented promising results in grayscale-thermal tracking.
However, these methods ignored the reliabilities of dif-
ferent modalities in sparse representation.

« How to create a comprehensive grayscale-thermal track-
ing benchmark to facilitate the research of this direction.
The related research is presently limited by the lack of
a comprehensive video benchmark. Existing grayscale-
thermal video datasets, like OSU Color-Thermal [5]
and LITIV [6], [7], contain small number of videos
and induce significant bias [11]. In particular, OSU
Color-Thermal [5] and LITIV [6], [7] datasets contain 6,
9 and 4 grayscale-thermal video sequences, respectively.

IThe grayscale-thermal object tracking (GTOT) benchmark: http://hcp.sysu.
edu.cn/resources/.
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Fig. 1.

Illustration of the optimized weights based on the modal reliabilities. The blue and red curves indicate the weights of grayscale and thermal sources,

respectively. One can see that the optimized weights of grayscale-thermal sources are almost consistent with their reliabilities, and thus our method can achieve
robust tracking even though one modality has occasional perturbation or malfunction.

Sparse representation, directly related to compressed sens-
ing [12], has recently attracted much attention in visual
tracking [13]-[16]. Liu and Sun [4] and Wu et al. [10]
also employed the idea of sparse representation to grayscale-
thermal tracking. More specifically, Wu et al. [10] concate-
nated the image patches from grayscale and thermal sources
into a one-dimensional vector that is then sparsely represented
in the target template space. Liu and Sun [4] performed
joint sparse representation calculation on both grayscale and
thermal modalities and fused the resultant tracking results
using min operation on the sparse representation coefficients.
These trackers have two main weaknesses: 1) They treated
each modality equally, and thus may significantly limit the
tracking performance in dealing with occasional perturbation
or malfunction of individual sources. 2) They calculated the
observation likelihood of each candidate in whole dictionary
but ignored the discriminative information between object and
background.

In this paper, we propose a novel adaptive tracking
method based on collaborative sparse representation within
the Bayesian filtering framework. For each modality, we
employ the idea of sparse representation for the robustness
against appearance contaminations inherited from the previ-
ously sparse trackers in grayscale or thermal videos [13], [17].
Unlike assuming that available modalities contribute equally
in [4] and [10], we pursue a collaborative sparse representation
for adaptive object tracking by introducing the weight vari-
ables to represent modal reliabilities, and jointly optimize the
sparse codes and the reliable weights of different modalities in
an online way. Collaborative sparse representation is capable
of dealing with occasional perturbation or malfunction of
individual sources, as shown in Fig. 1. Considering the sparse
representation in each modality as an individual task, our
method is essentially formulated as a multi-task learning
problem. Finally, given the motion model, an object is located
by maximizing the discriminative likelihood based on the pro-
posed collaborative sparse representation in Bayesian filtering
framework.

It is worth mentioning that our method has the following
two characters: i) it is capable of collaboratively integrating
grayscale and thermal information by jointly optimizing the
sparse codes and reliable weights, and thus maintains the
persistence of online tracking in challenging scenarios; ii) it
derives discriminative likelihood from the proposed collabora-
tive sparse representation for Bayesian filtering, which allows
uncertainty reasoning over both grayscale data and thermal
data.

In addition, we build a new grayscale-thermal object track-
ing (GTOT) benchmark and release it for evaluating track-
ing methods. The GTOT dataset includes 50 video pairs,
each consisting of a grayscale video and a thermal video.?
As a comprehensive platform, the benchmark provides statis-
tics bias analysis, annotations of visual trajectories, evalua-
tion metrics, and baseline methods with both grayscale and
grayscale-thermal inputs.

This paper makes the following contributions to grayscale-
thermal tracking and related applications.

o It proposes a novel adaptive tracking approach that
can effectively integrate grayscale and thermal infor-
mation based on the collaborative sparse represen-
tation in Bayesian filtering framework. In particular,
we jointly optimize the sparse codes and the reliable
weights of different modalities in the collaborative sparse
representation.

o It creates one unified grayscale-thermal benchmark,
including: 1) 50 video pairs with analysis of bias sta-
tistics, 2) ground truth annotations of every frames in
both grayscale and thermal videos, which are finished by
one person for consistency, 3) two evaluation metrics, and
4) two kinds of baseline methods. This benchmark will
be available online for free academic usage.

o It presents extensive experiments against other state-
of-the-art trackers with both grayscale and grayscale-
thermal inputs. The evaluation results demonstrate the

2The GTOT webpage: http://hcp.sysu.edu.cn/resources/.
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effectiveness of the proposed approach. Through analyz-
ing quantitative results, we further provide basic insights
and identify the potentials of thermal information in
grayscale-thermal tracking.

The rest of this paper is organized as follows. In
Section II, the relevant methods to our works are introduced.
In Section III, we describe the details of the proposed
approach. The new grayscale-thermal benchmark is presented
and analyzed in Section IV, and the experimental results are
shown in Section V. The final Section VI concludes this paper.

II. RELATED WORK

This work is closely related to the advances in three research
streams and the development of visual benchmarks.

Single-modality object tracking has been extensively stud-
ied in computer vision community. The most successful
stories come from the application of the various machine
learning techniques, including SVM [18], boosting [19],
sparse representation [16], subspace learning [20], [21], metric
learning [22] and correlation filter [23], [24]. Most of these
methods, however, only work on grayscale data and thus suffer
from the aforementioned challenges, i.e., low-illumination, bad
weathers, etc.

Multi-modality tracking has drawn a lot of attentions
in the community with the popularity of various sensors,
e.g., depth sensors [25], and thermal infrared sensors [1].
Conaire et al. [1] evaluated appearance model tracking per-
formance of multiple different fusion schemes on manually
annotated multi-modal surveillance videos. Bunyak et al. [9]
presented a moving object detection and tracking system
that fused grayscale and thermal videos within a level set
framework. Conaire et al. [8] proposed a framework that
can efficiently combine features for robust tracking, and
instantiated the fusion of thermal infrared and visible spec-
trum features in this framework for automated surveillance
applications. The impact of pixel-level fusion of videos from
grayscale-thermal surveillance cameras was investigated by
Cvejic et al. [26] to compare to tracking in single modality
videos. This tracker had been accomplished by means of
a particle filter which fuses a color cue and the structural
similarity measure. A pedestrian tracker designed as a par-
ticle filter was introduced by Leykin and Hammoud [27]
based on the proposed background model, in which each
pixel was represented as a multi-modal distribution with
the changing number of modalities for both grayscale and
thermal input. Wu et al. [10] concatenated the image patches
from grayscale and thermal sources into a one-dimensional
vector that is then sparsely represented in the target template
space. Liu and Sun [4] performed joint sparse representation
calculation on both grayscale and thermal modalities and fused
the resultant tracking results using min operation on the sparse
representation coefficients. In contrast, we present a multi-task
collaborative sparse representation for online tracking in this
work.

Sparse representation was widely applied to visual track-
ing and achieved impressive results because of its capa-
bility of suppressing noises and errors [13]-[16], [28].
Mei and Ling [13] first proposed a sparse representation based
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tracker to handle the corrupted appearance, and recently it has
been further improved [14]-[16]. Zhang et al. [14] constructed
a multi-task sparse learning method denoted as multi-task
tracking by employing the concept of sparse representation
based on a particular framework. Bao et al. [15] proposed
a fast real time /{-tracker called the APG-/; tracker, which
utilized the accelerated proximal gradient algorithm to improve
the efficiency. Zhong et al. [16] developed a sparsity-based
collaborative model for object tracking. The collaborative
model combined a sparsity-based classifier learned from holis-
tic templates and a sparsity-based generative model generated
from local representations. We extend in this work the col-
laborative model with a Bayesian filter technique for robust
seasoning.

There has been several grayscale-thermal video datasets for
the various vision tasks. For example, OSU Color-Thermal
dataset [5] contains six grayscale-thermal video sequence
pairs recorded from two different locations with only peo-
ple moving, which is obviously not sufficient to evaluate
grayscale-thermal tracking algorithms. Other two grayscale-
thermal datasets are collected by Torabi et al. [6], Bilodeau
et al. [7]. Most of them suffer from their limited size, low
diversity and high bias. This work addresses these issues and
creates a reasonable size grayscale-thermal video dataset that
provides comprehensive benchmark.

III. ADAPTIVE TRACKING VIA COLLABORATIVE
SPARSE REPRESENTATION

In this section, we introduce an adaptive grayscale-thermal
object tracking method in Bayesian filtering framework.

A. Overview of Our Approach

Our tracking method utilizes Bayesian filtering technique
for uncertainty reasoning. To define the likelihood function,
we represent each object of interest as a set of basis, i.e.,
object templates, and adaptively update the template set on the
fly. To track an object over time, we measure each candidate
region by how well it could be sparsely reconstructed from the
template basis. For grayscale-thermal tracking, we maintain a
template set for each modality. This is actually a multi-task
learning problem if we consider the reconstruction of target
region in each modality as an individual task.

When the target is occasional perturbation or malfunction in
one modality, other modalities can complement information to
avoid model drift in tracking process. Therefore, we introduce
a weighted variable for each modality, and make it optimized
independently.

An object template used consists of two types of basis for
each modality: one from the tracked foreground regions, and
another from the surrounding background regions. We refer
them to positive basis and negative basis, respectively. Thus,
the likelihood function is defined by a discriminative likeli-
hood score based on the reconstruction residual by positive
basis and the reconstruction residual by negative basis. This
discriminative likelihood is capable of capturing the surround-
ing contrast information as the target is moving in the scene.
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B. Review: Bayesian Filtering

We first review the Bayesian filtering based tracking
method. Let ZEM] = [z[lM], Z[ZM], e, ZEM]] denote the obser-
vation set generated from M different modalities, where the
operator [M] indicates the set of integers between 1 and M:
M]={1,2,...,M}, eg., ZEM] = {z,l, z,z, e, zf”}. grayscale-
thermal data used in this paper is the special case with M = 2.
Given ZEM] and the state variable x;, we can compute the

optimal state X, by Maximum A Posterior (MAP) estimation,

(1

X; = arg max P(x,’i|Z£M]),
X,

where Xx;; indicates the state of the i-th sample at time . We
factorize Eq. (1) by Bayesian rules as follows,

PxAZMy oc P 1x,) / P(x|%—1) P (x—11ZMhdx, 1,
)

where P(x;|x;—1) and P(zEM]|xt) are the motion model and
the likelihood model, respectively. We utilize six independent
affine parameters, including deformable and translated infor-
mation, to represent the variation of motion, and model the
dynamic process by the Gaussian distribution,

P(XT|XI—1) = N(X[; Xr—1, ap)»

3)

where o, denotes a diagonal covariance matrix whose ele-
ments are the variations of the affine parameters, and its setting
depends on motion variations of the target object. Based on the
current tracking result, we predict a set of candidate regions in
the next frame according to the motion model. The likelihood
term P(ZEM]|X;) will be defined in a discriminative way to
measure the confidence of each candidate object region.

C. Collaborative Sparse Representation

We describe an object of interest with two template bases
for each modality, one is extracted from the foreground
regions, and another from the surrounding background regions.
Let Y" = [y, y5,...,¥%] € R4*K denote the candidate
set, where m = 1,...,M, d and K denote the feature
dimension and the number of candidates, respectively. The

positive and negative template bases are denoted by TE,A(/,IS] =
M] (M M M M1 M M

e M) and Ty = DD

where p and ¢ indicate the number of positive and negative

templates. Thus, we construct M dictionaries as TIMl =
[TE,OS],T,E[ZQ], and reconstruct the candidate samples as fol-
lows:

I (omys

C,alM]
’ m=1

Y™ —T"C™||% + AlICli2,1

2
M

+ D @@ + (1 —a™)),
m=1

sit. C>=0,a™M >0, 4)

where C = [Cl; Ccz ... CM], and ICll2,1 encourages that one
candidate shares the same pattern across different modalities.
T" is the dictionary of the m-th modality, which consists
of both positive and negative basis templates of the m-th
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Algorithm 1 Optimization Procedure to Eq. (4)

Input: The template set TIM] the candidate set YMI:
Set o™ = % (m=1,2,....M);
e =10"15, mazlter = 3.

Output: C, oM,

1: for £k =1 : maxIter do

2:  Update C by solving Eq. (5);

3:  if k ==1 then

4: B = max(|[Y™ — TmC™||%) * 2;
s endif

6:  Update oM by Eq. (11);

7 if |Jk — Jk,1| < ¢ then

8: Terminate the loop.

9:  end if

10: end for

modality. a™ is the reliable weight for the m-th modality, and
s € (1,00) is a fuzzy parameter [29], [30]. 4 is a balance
parameter. The nonegative constraint C > 0 is used to avoid
the meaningless negative elements, as each element of C rep-
resents the similarity between the corresponding candidate and
template. The last term of Eq. (4) is the regularization of aM],
which avoids a degenerate solution of a™! while allowing
them to be specified independently. ¢! are the adaptive
parameters which can be set manually if modal discriminative
abilities are known beforehand, and also be updated online to
adapt its variations. In implementation, we empirically update

| maX(CZ’I,t,pUS)*max(cf)npt—neg)l —
_ — ), m =

it online as ¢™ = f exp( ”
1,2,..., M. Herein, f is a balance parameter initialized
based on the reconstruction errors after the first iteration
(see Algorithm 1 for details), and oy is adaptively set to

M m m Cm
lze max,,_; (| max(Cp,; _ ,,s) —max(Cg,, _,00)1). Copr— oy and
Copi—neg Tepresent the previous positive and negative coeffi-

cients of the optimal candidate on template basis, respectively.

a1 in Eq. (4) can be adjusted online based on the modal
reliabilities due to the following reasons. 1) In one modality,
the reconstruction error can measure all candidate regions by
how well it could be sparsely reconstructed from the template
basis. Therefore, the qualities of different modalities can be
reflected by their respective reconstruction errors. From the
first term in Eq. (4) one can see that our method places larger
weights on those modalities which have smaller reconstruc-
tion errors, resulting in a quality-aware weight optimization.
Fig. 2 (a) shows one sample of this situation. 2) In some
challenging scenarios, reconstruction errors are not enough
to represent modal reliabilities for tracking task, as shown in
Fig. 2 (b). To obtain more reliable weights, we introduce the
adaptive parameters defined by the computed sparse codes to
represent the modal discriminative abilities. This regularization
leads to a discrimination-aware weight optimization. Fig. 2
justifies the effectiveness of the adaptive parameters.

D. Problem Optimization

Though the optimization problem in Eq. (4) is not jointly
convex in C and a!™!, we can utilize the alternate strategy to
optimize one variable with another fixed.
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=22.81,R2=28.11 Di= 839,D2=29.10 Wi=

0.54, W2=10.39

Ri=37.60,R2=32.67 D1=17.31,D2
(b)

22.14 Wi1=0.56, W2=0.45

Fig. 2. Two typical samples with the optimized weights are shown
in (a) and (b), respectively. R, D and W denote the reconstruction error, the
adaptive parameter and the optimized weight, respectively. Subscript 1 is for
grayscale video and 2 for thermal video.

Given fixed a1, Eq. (4) can be rewritten as

M
) (am)s
min > = [Y" = T"C" |} + ZIClz.1 + w(C), (5)

m=1
where y (C) is defined as
0, if Cij >0
w’

w(C) = ) (6)

else

Eq. (5) can be efficiently solved by applying the Accelerated
Proximal Gradient (APG) approach [31]. We denote

F(C) = Z

m=1

G(C) = lICll2,1 + w(C). @)

Let initial C be zero, APG utilizes the following update
equations at the k-th iteration:

= Ck 4 pk(ch -
= prox; jx (A

(a™)

Y™ —T"C"|%,

Ak-H Ck_l),

Ck-H _ tka(Ak-H))’ ®)

where r* denotes constant step size, updated using a line search
algorithm [31], and the extrapolating parameter p is set to be
%. The associated proximal optimization problem is defined
as follows:

prox; (V) argmln G(U)+—||U V||F

IIU = V||%).

©)

This paper employs the Sparse Modeling Software [32] to
solve the proximal step in Eq. (9).

= 0, in ||U —
max( argmin [l II2,1+2/1
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Given C, Eq. (4) can be written as
”Ym " Cm ”2
min Z (@™ (—————E +¢™)

+ (1 =a™?®), st.a™ =0, (10
which has a closed-form solution:
1

m _
* = VTrCni ) an

14 (™ + £)s=T

where m = 1,2,..., M. The whole optimization procedure
is summarized in Algorithm 1, in which J; denotes the k-th
objective value of Eq. (4).

E. Discriminative Likelihood

For each candidate region, we utilize the reconstruction
residues from both positive basis and negative basis to define
its likelihood, e.g., P(y;|x;) for i-th candidate y;. In contrast,
the past sparse representation based tracking algorithms usu-
ally employ positive template only [13]-[15]. In particular,
their methods are likely to drift when target appearance is
similar to the background [16].

For i-th candidate, we obtain the constructed errors on the
positive and negative templates of m-th modal as

etr'n—pos = ”Y:n posC:n pos”F’
e =Y -1,,,C" ||F.

1—neg neg ~i—neg

12)

For effective fusion of different modalities, we normalize
the constructed errors of each modality into [0, 1]:

€" = (¢ — min (e™))/(max (€™) — min (e™)),

13)

with m = 1,2, ..., M, where min (¢™) and max (e™) denote
the minimum and maximum elements of e”, respectively.
Note that this normalization method is usually obtain good
performance even though different error vectors have different
normalization rules. In fact, the normalized error vectors are
further combined with the optimized reliable weights, and
thus we can achieve a reliability-aware fusion for different
modalities. The discriminative score of i-th candidate can be
defined as follows,

1
14 exp{— M _ am(@n neg — el o))

Thus, we could select a candidate region that maximizes the
Eq. (1), which integrates the motion term and the discrimina-
tive likelihood term.

Py x) o (14

F. Implementation Details

For each candidate region, we extract gray features as
follows. First, we resize each candidate or template with fixed
size and partition it into local patches. Then, we quantize the
grayscale values in each local patch into vectors, and con-
catenate these vectors together as the feature representation.
To this end, the feature could preserve the global structure and
get rid of the local effect, such as appearance variations and
partial occlusions.
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We initialize positive template by collecting multiple
patches from the manually annotated regions. To alleviate
model drifting, we keep the first template in the positive
template set unchanged. In addition, we use the past tracking
result to replace the positive template which has the largest
similarity with the new target appearance, if the largest sim-
ilarity is larger than a specified threshold o;. Otherwise, we
discard this bad sample without update, as there is a large
appearance change or a part of the target is occluded. To adapt
the variations in different scenes, we define the above threshold
by mean distance of positive samples in initial frame in our
experiments, where is on the other hand, negative templates
are updated dynamically. For each frame, we sample positive
patches from an annular region that keeps a few pixels away
from the center of tracking result.

G. Difference With Related Work

It should be note that the proposed tracking algorithm
based on collaborative sparse representation is significantly
different from recently proposed approaches that use sparse
representation for grayscale-thermal tracking [4], [10].

In [10], the image patches from different sources of each
target candidate are concatenated into a one-dimensional vec-
tor that is then sparsely represented in the target template
space. The solution of the sparsity in the representation can be
achieved by solving an /j-regularized least squares problem,
and the tracking result is then determined by finding the
candidate with the smallest approximation error. While [4]
employs the joint sparse representation on both modalities, and
the resultant tracking results are fused using min operation on
the sparse representation coefficients.

The proposed algorithm is significantly different from [4]
and [10] in several aspects. First, our algorithm assigns each
modality with a weight that describes the modal reliability, and
thus pursues a collaborative sparse representation for adaptive
object tracking. Second, the quality-aware and discrimination-
aware regularizations on weights make our algorithm robust
in dealing with occasional perturbation or malfunction of
individual sources. Third, our algorithm jointly optimizes the
sparse codes and the weight variables of different modalities
in an online way. The sparse codes are efficiently optimized by
the APG method [31], and the weights are solved with closed-
form solutions. Finally, our algorithm utilizes reconstruction
residues from both positive and negative basis to define
the discriminative likelihood, which can prevent the model
drift effectively when the target appearance is similar to the
background.

IV. GRAYSCALE-THERMAL TRACKING BENCHMARK

In this section, we introduce the newly collected grayscale-
thermal object tracking (GTOT) benchmark, including dataset
construction with statistics analysis, baseline methods with
both grayscale and grayscale-thermal inputs, and evaluation
metrics.

A. GTOT Benchmark

We collected 50 grayscale-thermal video clips under differ-
ent scenarios and conditions, e.g., office areas, public roads,
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and water pool, etc. Each grayscale video is paired with
one thermal video. We manually annotated them with ground
truth bounding boxes. All annotations are done by a full-time
annotator, to guarantee consistency. Among these videos, there
are 4 videos from OSU Color-Thermal [5] and LITIV [6].
Some typical samples are presented in Fig. 3. We introduce
more details of the dataset in the following.

Hardware Setup. Our recording system consists of an
online thermal image (MAG32) and a CCD camera (SONY
TD-2073). We mount these two cameras in tripods, and make
their views overlapped as much as possible for convenient
alignment.

Alignment. Unlike industry registration in RGBD sensors,
we manually construct the recording system, and develop an
annotation tool to align grayscale-thermal videos in following
way. We uniformly select a number of point correspondences
in keyframe of the video pair, and compute the homography
matrix by the least-square method. Then, the video pair can
be aligned by applying the computed homography matrix to
transform remaining frame pairs. This registration method can
accurately align video pairs due to two main reasons. First, we
carefully choose the planar and non-planar scenes to make the
homography assumption effective. Second, since two camera
views are almost coincident as we made, the transformation
between two views is simple.

Annotation. Due to manually aligning in video pairs, we
annotate the ground truth of dataset by drawing minimum
bounding boxes covering the targets on both grayscale and
thermal frames. In particular, all frames are manually anno-
tated by one person to keep high consistency of dataset. When
occlusion occurs, ground truth box only cover the visible
portion of the target. When the target of one modal frame
is ambiguous while another is distinguishable, we can not
exactly annotate the ground truth of ambiguous one. In such
circumstance, we define its ground truth as the ground truth
of distinguishable one.

Statistics. We captured video pairs in sixteen scenes, includ-
ing laboratory rooms, campus roads, play grounds and water
pools, etc. We analyze the diversity and bias of this video
dataset from the following aspects.

o Object category. We annotate both rigid objects and
nonrigid objects. Rigid objects, including vehicles and
human heads, usually move fast and have large scale
variation over time. Non-rigid objects, including humans
and swans, have very high degree of freedom, and usually
increase the difficulty in tracking.

e Object size. Small objects frequently appear in visual
surveillance. Tracking of small objects is important yet
challenging because they do not include enough appear-
ance information.

o [llumination condition. The video sequences are recorded
under different weather conditions, including sunshine,
overcast sky, rain and snow, which can bring big chal-
lenges in grayscale videos. In addition, the illumination
of some grayscale videos significantly varies over time.

o Thermal crossover. When the targets have similar
temperature with other objects or background, ‘“ther-
mal crossover” will occur in thermal videos. In such
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Fig. 3.
box of the target object.

circumstance, thermal information will be ambiguous in
tracking objects.

e Scale variation. Scale adaptation is important to alleviate
model drift. Some of our videos have large scale vari-
ation, e.g., a car closing toward the camera. We extract
histogram of relative area to the first frame bounding box
in Fig. 4 (e) to reflect the statistics of scale variation.

o Presence of occlusion. Our videos cover several aspects
of occlusion, e.g., how much the target is occluded, how
long the target is occluded, and the target is completely
occluded in grayscale (thermal) video while can be seen
in thermal (grayscale) video.

e Moving speed. We also take the motion speed of the
target into account. Fig. 4 (d) shows the histogram of
center distance between consecutive frames, which can
reflect the statistics of moving speed.

Table I summarizes attributes of the newly built video
datasets. These fine-grained annotations allow us to analyze
the attributed-sensitive performance of the object tracking
methods. We present the attribute distribution in Fig. 4 (a).

B. Baseline Methods

For evaluating the proposed approach and providing a com-
prehensive evaluation benchmark, we include some popular
tracking methods as baselines into our GTOT benchmark.

On one hand, thirteen grayscale trackers are presented
to demonstrate their performance in challenging scenarios,
including DSST [33], RPT [35], MUSTer [34], MEEM [36],
PCOM [40], CN [23], STC [37], SCM [16], KCF [24],
CT [39], Struck [18], TLD [38] and MIL [19]. Table II sum-
marizes these baselines. On the other hand, we also implement

Quarreling: OCC,LSV.FM,L1,TC SO,DEF
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Gathering: LI, DEF
o [[7., pm———

Otcbvs: OCC, TC, SO, DEF

LightOcc: OCC, LSV, FM, LI

Sample video pairs with annotated attributes from our grayscale-thermal dataset. The first frame of each sequence is shown with initial bounding

TABLE 1

LIST OF THE ATTRIBUTES ANNOTATED TO
OUR GRAYSCALE-THERMAL DATASET

[ Attribute | Description |
OCC Occlusion - the target is partially or fully occluded.
LSV Large Scale Variation - the ratio of the first bounding
box and the current bounding box is out of the range
[0.5, 1].

FM Fast Motion - the motion of the ground truth is larger
than 10 pixels.

LI Low Illumination - the illumination in the target region
is low.

TC Thermal Crossover - the target has similar temperature
with other objects or background.

SO Small Object - the number of pixels in the ground truth
bounding box is less than 400.

DEF Deformation - non-rigid object deformation.

thirteen grayscale-thermal trackers for identifying the impor-
tance of thermal information, where eleven trackers of them
are induced by grayscale trackers (DSST, Struck, SCM, KCF,
CN, CT, MIL, STC, and TLD), and another two trackers are
L1-PF [10] and JSR [4]. In particular, we concatenate features
used in trackers from grayscale and thermal modalities as
grayscale-thermal input of corresponding tracking algorithms.

Note that the model of JSR is the same as Ours-II, i.e.,
the reliable weights are removed in the proposed model,
see Section V-C for more details. However, the main dif-
ference between JSR and Ours-II is that Ours-II utilizes
reconstruction residues from both positive and negative basis
to define the discriminative likelihood, while JSR fused the
resultant tracking results using min operation on the sparse
representation coefficients, which might be ineffective when
target appearance is similar to the background.
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Fig. 4.

Dataset statistics. (a) Attribute distribution of entire dataset. (b) Distribution of first frame bounding boxes. (c) Distribution of all bounding boxes.

(d) Distance between consecutive frames. (e) Relative area to first frame bounding box. (f) Width-height ratio of all bounding boxes. (g) Width-height ratio
of first frame bounding boxes. (h) Width distribution of all bounding boxes. (i) Height distribution of all bounding boxes.

C. Evaluation Metrics

We utilize two widely used metrics, precision score and suc-
cess plot, to evaluate the tracking performance. In particular,
the final precision score and success score are defined as the
best one of two modalities.

Precision score. Center Position Error is the Euclidean
distance between the center locations of the tracked object
and the ground truth bounding box, and usually employed to
evaluate tracking precision. However, it will be invalid when
the trackers are failed [19]. To evaluate overall performance,
we employ the precision score used in recent literatures [19],
[24], [41], the percentage of frames whose output location
is within the given threshold distance of ground truth. Since
many targets are small, we set the threshold to be 5 pixels
instead of 20 pixels in other works [19], [24] to obtain the
representative Precision Score (PS).

Success plot. Bounding box overlap is another effective
evaluation metric. Given the output bounding box r, and the
ground truth bounding box 7, the overlap score is defined
as S = }:"G—:g:, where [ and J denote the intersection and
union opé)ratogrs of two regions, and | - | indicates the number
of pixels in the region. Setting a threshold 7, of overlapping
area, we can calculate the success rate value, the ratio of the
number of successful frames whose overlap S is larger than z,.
The success plot can be shown by the success rate at different
t, (€ [0, 1]). Unlike specifying a fixed threshold in CPE, we
employ the Area Under Curve of success plots to define the
Success Score (SS), and rank the tracking algorithms [41].

TABLE II

LIST OF THE BASELINE TRACKERS WITH THE USED FEATURES,
THE MAIN TECHNIQUES AND THE PUBLISHED INFORMATION

Baseline Feature Technique Booketitle Year
RPT Grayscale Sequential Monte Carlo CVPR 2015
MUSTer HOG Correlation filter CVPR 2015
DSST HOG&Grayscale Correlation filter BMVC 2014
PCOM Grayscale MRF CVPR 2014
MEEM Lab SVM ECCV 2014
CN Colors Correlation filter CVPR 2014
STC Grayscale Correlation filter ECCV 2014
JSR Colors Sparse representation INFOSCI 2014
SCM Grayscale Sparse representation CVPR 2012
KCF HOG Correlation filter ECCV 2012
CT Haar Naive Bayes classifier ECCV 2012
L1-PF Grayscale Sparse representation ICIF 2011
Struck Haar SVM Iccv 2011
TLD Binary pattern P-N learning TPAMI 2011
MIL Haar Boosting CVPR 2009

V. EXPERIMENTS

In this section, we apply the proposed tracking method
on our GTOT benchmark and compare with other popular
tracking methods. The source codes, evaluation metrics, result
figures will be provided with the benchmark for public usage
in the community.

A. Parameter Settings

We detail the parameter settings of Algorithm 1 as fol-
lows. The balance parameter 4 is to control the sparsity of
reconstruction coefficients on both modalities. The results
with different A are shown in Table III, and thus we set it
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Fig. 5.

Success plots of the proposed trackers with state-of-the-art trackers on the entire dataset and several subsets. Herein, baseline trackers are with only

grayscale input, and top ten trackers are shown in the legend for clarity. (a) Entire dataset. (b) OCC subset. (c) LSV subset. (d) FM subset. (e) LI subset.

(f) TC subset. (g) SO subset. (h) DEF subset.

TABLE III

PRECISION SCORE/SUCCESS SCORE (PS/SS) OF THE PROPOSED
METHOD WITH DIFFERENT PARAMETERS

Param Setting PS/SS Param Setting  PS/SS
0.0001  71/60 40x40  57/49

A 0.001 75/62 | Region Size 32x32  75/62
0.01 67/56 24x24  68/56

2 75/62 16x16  70/58

S 3 70/59 | Patch Size 8x8 75162

4 65/54 4x4 64/55

to be 4 = 0.001. The fuzzy parameter s € (1,00) [30]
is set to be 2 by observing the performance with different
s in Table III. We resize each sample to be a region of
32 x 32 pixels, and evenly partition each patch into
8 x 8 patches for better performance, as shown in Table III.
Note that the sizes of the normalized region and the partitioned
patch are important for robust tracking. This is because that
the feature representations generally play a crucial role in
visual tracking task. In addition, s controls the variations
among reliable weights, and its influences to the performance
demonstrate the significance of the introduced modal reliable
weights.

The negative and positive templates are updated in each
frame to adapt the appearance variations of surrounding back-
ground and target object in time, respectively. In Bayesian
filtering, the number of candidates is generally determined by
the trade-off between the computational cost and the variance
of the resulting estimates. Some works set a different number
for each video sequence according to the motion variations of
target object, but we fix it to be 200 on entire dataset for more
fair comparison. Similarly, the positive and negative samples

are set to be 20 and 200, respectively. o; determines that
whether one tracking result is used to replace one template
in the positive template set or not. Smaller o, will keep
the adaptation of the template set to variations of object
appearance, while easily introducing noisy templates, and vice
versa. Therefore, we set it to be 1.5 and 0.8 for grayscale and
thermal modalities for balancing the adaptation and clearness
of the positive template set, respectively.

B. Comparison Results

To justify the importance of thermal information and
the effectiveness of the proposed approach, we evalu-
ate the compared methods with grayscale or grayscale-
thermal inputs, where the baselines have been introduced
in Section I'V-B.

Overall performances. We first report the success plots
and Success Score (SS) of grayscale trackers on entire dataset
in Fig. 5 (a) and Table IV, respectively. From the evaluation
results, we can observe that the proposed approach sub-
stantially outperforms the baseline trackers. This comparison
clearly demonstrates the effectiveness of our approach for
exploiting thermal information. The success plots and SS of
grayscale-thermal trackers on entire dataset are then presented
in Fig. 6 (a) and Table V respectively for justifying the
effectiveness of the proposed method in adaptively exploit-
ing grayscale-thermal information. We also employ Precision
Score (PS) to evaluate the overall performance, as shown in
Table VI. The results further suggest that our method can
achieve robust tracking in challenging scenarios by employing
grayscale-thermal information, and outperforms other state-
of-the-art trackers with both grayscale and grayscale-thermal
inputs.
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Fig. 6.  Success plots of the proposed trackers with state-of-the-art trackers on the entire dataset and several subsets. Herein, baseline trackers are with

grayscale-thermal input, and top ten trackers are shown in the legend for clarity. (a) Entire dataset. (b) OCC subset. (c) LSV subset. (d) FM subset.
(e) LI subset. (f) TC subset. (g) SO subset. (h) DEF subset.
TABLE IV

SUCCESS SCORE (SS, %) OF SUCCESS PLOTS AND CORRESPONDING RANKINGS (IN PARENTHESIS) WITH DIFFERENT ATTRIBUTES. HEREIN,
BASELINE TRACKERS ARE WITH ONLY GRAYSCALE INPUT. THE BOLD FONTS OF RESULTS INDICATE THE BEST PERFORMANCE,
AND THE FINAL RANK IS THE AVERAGE RANK OF ALL ATTRIBUTES

Algorithm || Rank | Al | OCC | LSV | FM LI TC SO | DEF
Ours 100 | 62(D) | 63() | 65(1) | 65(1) | 61(1) | 641 | 61(1) | 56(D)
DSST [34] 200 | 56(2) | 51(3) | 60(3) | 503) | 532) | 57(2) | 542) | 532
SCM [16] 313 | 51(3) | 53(2) | 612) | 552) | 483) | 553) | 47(3) | 40(7)
MUSter [35] || 3.88 | 49(4) | 46(4) | 53(4) | 45() | 47(4) | 50(4) | 46(4) | 46(3)
RPT [36] 525 | 45(5) | 46(4) | 48(5) | 44(5) | 42(5) | 43(6) | 37(8) | 44
Struck [18] 6.00 | 42(6) | 41(5) | 41(8) | 42(6) | 41(6) | 42(7) | 45(5) | 43(5)
MEEM [37] || 6.50 | 42(6) | 40(6) | 43(7) | 36(8) | 39(7) | 44(5) | 38(7) | 42(6)
STC [38] 800 | 38(8) | 39(7) | 43(7) | 35(9) | 3509) | 41(8) | 39(6) | 34(10)
TLD [39] 938 | 36(9) | 32(10) | 44(6) | 37(7) | 32(11) | 40(9) | 34(10) | 29(13)
CN 23] 938 | 36(9) | 36(8) | 39(10) | 36(8) | 33(10) | 40(9) | 3509) | 31(12)
KCF [24] 938 | 38(8) | 34(9) | 4009) | 36(8) | 36(8) | 34(11) | 29(13) | 37(9)
MIL [19] 950 | 39(7) | 34(9) | 37(12) | 33(10) | 35(9) | 37(10) | 32(11) | 39(8)
CT [40] T1.13 | 34(10) | 32(10) | 36(13) | 28(12) | 32(11) | 34(11) | 31(12) | 32(11)
PCOM [41] || 11.88 | 29(11) | 28(11) | 38(11) | 31(11) | 25(12) | 34(11) | 26(14) | 19(14)

Attribute-based Performance. For evaluating trackers on
subsets with different attributes to facilitate analysis of perfor-
mance on different challenging factors, We present the success
plots of all attributes in Fig. 5 (b-i) and Table IV for grayscale
trackers, and Fig. 6 (b-i) and Table V for grayscale-thermal
trackers, respectively.

For grayscale trackers, our method substantially outper-
forms all baselines in all attributes, demonstrating the effec-
tiveness of our method in various challenging factors. The
results also demonstrate the importance of thermal information
in visual tracking, especially in LI and SO. In such scenarios,
thermal sources can provide more reliable information.

For grayscale-thermal trackers, the proposed method
achieve superior performance over other baselines in all

attributes except for DEF, further validating effectiveness of
our tracking method. In particular, for occasional perturbation
or malfunction of one modality (e.g., LI, TC and SO), our
method can effectively incorporate another modal information
to track objects robustly.

C. Component Analysis

To justify the significance of the main components of
the proposed model, we implement two special versions for
comparative analysis, including: 1) Ours-1, that set ¢ = 0 to
remove the adaptive parameter on a!™! in Eq. 4. 2) Ours-
II, that fix o™ %(m 1,2,.., M) to remove the weight
variables in Eq. 4.
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TABLE V

SUCCESS SCORE (SS, %) OF SUCCESS PLOTS AND CORRESPONDING RANKINGS (IN PARENTHESIS) WITH DIFFERENT ATTRIBUTES. HEREIN,
BASELINE TRACKERS ARE WITH GRAYSCALE-THERMAL INPUT. THE BOLD FONTS OF RESULTS INDICATE THE BEST PERFORMANCE,
AND THE FINAL RANK IS THE AVERAGE RANK OF ALL ATTRIBUTES

Algorithm Rank All ocCcC LSV ™M LI TC SO DEF
Ours 1.25 62(1) 63(1) 65(1) 65(1) 61(1) 64(1) 61(1) 56(3)
Ours-1 2.50 57(2) 58(2) 64(2) 60(2) 59(2) 56(2) 55(2) 52(6)
Ours-II 4.25 53(5) 53(4) 59(3) 55(4) 55(4) 54(4) 53(3) 50(7)
SCM [16] 3.13 56(3) 57(3) 65(1) 59(3) 56(3) 56(2) 53(3) 50(7)
Struck [18] 4.25 53(5) 52(5) 50(6) 52(5) 55(4) 51(5) 53(3) 60(1)
MEEM [37] 4.75 52(6) 53(4) 46(8) 52(5) 52(6) 55(3) 50(4) 58(2)
RPT [36] 4.88 54(4) 51(6) 52(5) 46(6) 52(6) 51(5) 48(5) 58(2)
CN [23] 5.88 50(7) 46(8) 50(6) 46(6) 53(5) 49(6) 50(4) 54(5)
MIL [19] 7.75 49(8) | 43(10) | 43(10) | 39(9) 49(7) 46(7) 44(7) 55(4)
CT [40] 8.50 48(9) | 43(10) | 42(11) | 37(10) | 49(7) | 43(10) | 45(6) 54(5)
LI1-PF [10] 8.88 43(11) 48(7) 53(4) 40(8) 40(12) 44(9) 42(8) 34(12)
STC [38] 9.13 46(10) | 42(11) 50(6) 34(12) | 48(12) 45(8) 44(7) 50(7)
TLD [39] 9.38 | 41(13) | 4409) 50(6) 44(7) 40(8) | 40(11) | 38(10) | 36(11)
JSR [4] 10.00 | 43(11) | 39(13) | 449) | 34(12) | 43(9) 44(9) 39(9) 45(8)
PCOM [41] 10.00 | 42(12) | 40(12) | 49(7) 44(7) | 42(10) | 40(11) | 33(11) | 40(10)
KCF [24] 11.50 | 42(12) | 36(14) | 42(11) | 35(11) | 41(11) | 37(12) | 32(12) | 44(9)
TABLE VI I:I Ours
PRECISION SCORE (PS) AND FRAME PER SECOND (FPS) OF THE
COMPARED TRACKERS WITH BOTH GRAYSCALE (G) AND [Jscm
GRAYSCALE-THERMAL (G-T) INPUTS ON THE ENTIRE
DATASET. THE BOLD FONTS OF RESULTS INDICATE :] Struck
THE BEST PERFORMANCE
MEEM
Algorithm G | GT Code Type FPS [ ]rer
Ours - 75 MATLAB & C++ 1.6
Ours-1I - 67 MATLAB & C++ 1.6 |:| CN
Ours-1I - 62 | MATLAB & C++ 34
MUSter [35] | 63 | - | MATLAB & C++ | 4.0 MIL
DSST [34] 68 - MATLAB & C++ 353 L1-PF
SCM [16] 58 55 MATLAB & C++ 0.3 _
RPT [36] 54 - MATLAB & C++ 2.6 - ]STC
MEEM [37] 48 - MATLAB & C++ 4.9 -
STC [38] 48 61 MATLAB 225.5 -
KCF [24] 47 56 MATLAB & C++ | 124.1 JSR
L1-PF [10] - 55 MATLAB & C++ 5.1 -5
CN [23] 47 66 MATLAB & C++ 65.4 - 4 PCOM
Struck [18] 46 68 C++ 10.8 = ker
JSR [4] - | 46 MATLAB 0.8 -
TLD [39] 38 | 45 | MATLAB & C++ | 2.7 “der
MIL [19] 36 | 48 C++ 3.7
PCOM [41] 32 - MATLAB & C++ 216 Fig. 7. One failure case of our method. W; and W5 denote the optimized
CT [40] 28 43 MATLAB 31.8 weights of grayscale and thermal sources, respectively. The third row presents

The evaluation results are reported in Fig. 6 and Table V, VI,
and we can draw the following conclusions. 1) The complete
algorithm outperforms Ours-1. This justifies the contribution
of the proposed adaptive parameter ¢ on a1, 2) Our method
substantially outperforms Ours-II. This demonstrates the sig-
nificance of the introduced weighted variables.

It is worth mentioning that the reasonable estimations of
reliable weights are important for robust adaptive tracking.
In general, if a modality is unreliable or ambiguous, our
approach will automatically assign it with a low weight
to alleviate the effects of this modality in tracking. With-
out such weighting schema, the unreliable information or
noises might contaminate the object model, leading to model

the tracking results of other grayscale-thermal methods.

TABLE VII

COMPARISON RESULTS (PS/SS) OF THE PROPOSED APPROACH WITH
SEVERAL TYPICAL SETTINGS OF THE RELIABLE WEIGHTS (G/T).
HEREIN, ONE SETTING DENOTES THAT THE RELIABLE WEIGHTS
OF GRAYSCALE AND THERMAL MODALITIES ARE
FIXED ON ENTIRE DATASET

0.1/0.01
60/49

0.01/0.1
51/48

0.4/0.6
67/58

0.5/0.5
62/53

0.6/0.4
68/58

Ours
75/62

drifting eventually. While it is possible to learn improper
weights as shown in Fig. 7, the proposed method can work
well for most of challenging scenes. To empirically justify
the effectiveness of our approach, Table VII presents the
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Fig. 8.
and the last two sequence pairs indicate the grayscale-thermal tracking results.

comparison results of the proposed approach with 5 typical
settings of reliable weights, which further validates the effec-
tiveness of the weight estimation of the proposed approach.
We also present one failure case generated by our method in
Fig. 7. The reliable weights sometimes are wrongly estimated
due to the effect of clutter background. From Eq. 4, we can
see that the reliable weight of one modality is determined
by its reconstruction error and adaptive parameter, i.e., the
smaller reconstruction error and adaptive parameter are, the
larger of the reliable weight is. When a more reliable modality
has bigger reconstruction error (e.g., Fig. 2) and adaptive
parameter, the computed reliable weight will be smaller.

P T EA )

— CT
e ww POONM

Output bounding boxes of trackers with grayscale and grayscale-thermal inputs. The first two sequence pairs denote the grayscale tracking results,

In such circumstance, our method will generate wrong tracking
results. In Fig. 7, the thermal information is reliable to track
the target object, but most grayscale-thermal methods are
failed. This problem could be tackled by incorporating the
measure of background clutter in optimizing reliable weights,
and will be addressed in our future work.

In addition to reliable weight computation, our approach
has another major limitation. The real-time tracking perfor-
mance is very important for visual processing systems, but
our algorithm has high computational cost due to inefficient
optimization to the proposed model. In future work, we
will alleviate it from two aspects. First, we will develop a
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fast solver to /{-regularized representation [42]. Second, we
will propose a strategy to reduce the number of sampled
candidates while improving their qualities, which can improve
the tracking efficiency without losing much accuracy.

D. Discussions

We observe from the evaluations that integrating grayscale
data and thermal data will boost tracking performance. The
improvements are even bigger while encountering certain
challenges, i.e., low illuminations, small objects and thermal
crossover, demonstrating the complementary benefits from
grayscale-thermal data.

We can also observe that some modal information is redun-
dant, and directly utilizing both of their information will
lead to bad tracking results, as shown in Table VI. We can
address this issue from two aspects. First, adaptively integrat-
ing different modal information (Our method and Ours-I) can
automatically determine the contribution weights of different
modalities to alleviate effect of redundant information. Second,
feature reduction or selection techniques (e.g., CN [23] and
SCM [16]) can compress or remove some useless information
and achieve more robust tracking performance.

In addition, we found from evaluations that scale adaptation
(e.g., the proposed methods, DSST [33] and SCM [16]) and
context information (e.g., Struck [18] and STC [37]) are
crucial for effective grayscale-thermal tracking.

VI. CONCLUSIONS

In this work, we proposed a robust adaptive tracking
algorithm that integrated collaborative sparse representation
in Bayesian framework, and built a comprehensive video
benchmark (GTOT) for grayscale-thermal tracking. Extensive
experiments on the new benchmarks demonstrated superior
performance over other popular tracking methods. In future
work, we will improve the efficiency of our method for
realtime command, and expand the video dataset to include
more challenging scenes, and evaluate more popular trackers
as parts of the benchmark platform.
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