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Abstract— As a crucial component in intelligent transportation
systems, traffic flow prediction has recently attracted widespread
research interest in the field of artificial intelligence (AI) with the
increasing availability of massive traffic mobility data. Its key
challenge lies in how to integrate diverse factors (such as temporal
rules and spatial dependencies) to infer the evolution trend of
traffic flow. To address this problem, we propose a unified neural
network called Attentive Traffic Flow Machine (ATFM), which
can effectively learn the spatial-temporal feature representations
of traffic flow with an attention mechanism. In particular,
our ATFM is composed of two progressive Convolutional Long
Short-Term Memory (ConvLSTM [1]) units connected with a
convolutional layer. Specifically, the first ConvLSTM unit takes
normal traffic flow features as input and generates a hidden state
at each time-step, which is further fed into the connected con-
volutional layer for spatial attention map inference. The second
ConvLSTM unit aims at learning the dynamic spatial-temporal
representations from the attentionally weighted traffic flow fea-
tures. Further, we develop two deep learning frameworks based
on ATFM to predict citywide short-term/long-term traffic flow
by adaptively incorporating the sequential and periodic data as
well as other external influences. Extensive experiments on two
standard benchmarks well demonstrate the superiority of the
proposed method for traffic flow prediction. Moreover, to verify
the generalization of our method, we also apply the customized
framework to forecast the passenger pickup/dropoff demands in
traffic prediction and show its superior performance. Our code
and data are available at https://github.com/liulingbo918/ATFM.
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network.
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I. INTRODUCTION

C ITY is the keystone of modern human living and indi-
viduals constantly migrate from rural areas to urban

areas with urbanization. For instance, Delhi, the largest city
in India, has a total of 29.4 million residents.1 Such a huge
population brings a great challenge to urban management,
especially in traffic control [2]. To address this challenge, intel-
ligent transportation systems (ITS) [3] have been exhaustively
studied for decades and have emerged as an efficient way of
improving the efficiency of urban transportation. As a crucial
component in ITS, traffic flow prediction [4]–[6] has recently
attracted widespread research interest in both academic and
industry communities, due to its huge potentials in many
real-world applications (e.g., intelligent traffic diversion and
travel optimization).

In this paper, we aim to forecast the future traffic flow in a
city with historical mobility data of taxicabs/bikes. Nowadays,
we live in an era where ubiquitous digital devices are able
to broadcast rich information about taxicabs/bikes mobility
in real-time and at a high rate, which has rapidly increased
the availability of large-scale mobility data (e.g., GPS signals
or mobile phone signals). How to utilize these mobility data
to predict traffic flow is still an open problem. In litera-
ture, numerous methods applied time series models (e.g.,
Auto-Regressive Integrated Moving Average (ARIMA) [8] and
Kalman filtering [9]) to predict traffic flow at each individual
location separately. Subsequently, some studies incorporated
spatial information to conduct prediction [10], [11]. However,
these traditional models can not well capture the complex
spatial-temporal dependency of traffic flow and this task is
still far from being well solved in complex traffic systems.

Recently, notable successes have been achieved for citywide
traffic flow prediction based on deep neural networks coupled
with certain spatial-temporal priors [7], [12]–[14]. In these
works, the studied city is partitioned into a grid map based
on the longitude and latitude, as shown in Fig. 1. The
historical traffic flow maps/tensors generated from mobility
data are fed into convolutional neural networks to forecast
the future traffic flow. Nevertheless, there still exist several
challenges limiting the performance of traffic flow analysis in
complex scenarios. First, traffic flow data can vary greatly in
temporal sequences and capturing such dynamic variations is
non-trivial. However, previous methods [7], [14], [15] simply

1http://worldpopulationreview.com/world-cities/
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Fig. 1. Visualization of two traffic flow maps in Beijing and New York
City. Following previous work [7], we partition a city into a grid map based
on the longitude and latitude and generate the historical traffic flow maps by
measuring the number of taxicabs/bikes in each region with mobility data.
The weight of a specific grid indicates the traffic density of its corresponding
region during a time interval. In this work, we take these historical maps as
input to forecast the future traffic flow.

applied convolutional operations or LSTM units to directly
map historical data to future flow prediction which are not
able to well model the temporal patterns. Second, the spatial
dependencies between locations are not strictly stationary and
the relation significance of a specific region may change from
time to time. Unfortunately, most of the existing methods
do not consider such dynamic spatial dependence of traffic
flow. Third, some internal periodic laws (e.g., traffic flow
suddenly changing due to rush hours) and external factors
(e.g., a precipitate rain) can greatly affect the situation of
traffic flow, which increases the difficulty in learning traffic
flow representations from data. Conventional works [7], [16]
statically fuse these internal and external factors, which fail to
flexibly generate effective representations to capture complex
traffic flow patterns.

To solve all above issues, we propose a novel
spatial-temporal neural network, called Attentive Traffic
Flow Machine (ATFM), to adaptively exploit diverse factors
that affect traffic flow evolution and at the same time
produce the traffic flow estimation map in an end-to-end
manner. The attention mechanism embedded in ATFM is
designed to automatically discover the regions with primary
impacts on the future flow prediction and simultaneously
adjust the impacts of the different regions with different
weights at each time-step. Specifically, our ATFM comprises
two progressive ConvLSTM [1] units. The first one takes
input from i) the original traffic flow features at each
moment and ii) the memorized representations of previous
moments, to compute the attentional weights. The second
LSTM dynamically adjusts the spatial dependencies with
the computed attentional map and generates superior
spatial-temporal feature representation. The proposed ATFM
has the three following appealing properties. First, it can
effectively incorporate spatial-temporal information in feature
representation and can flexibly compose solutions for traffic
flow prediction with different types of input data. Second,
by integrating the deep attention mechanism [17]–[20],
ATFM adaptively learns to represent the weights of each
spatial location at each time-step, which allows the model
to dynamically perceive the impact of the given area at a

given moment for the future traffic flow. Third, as a general
and differentiable module, our ATFM can be effectively
incorporated into various network architectures for end-to-end
training.

Based on the proposed ATFM, we further develop a deep
architecture for forecasting the citywide short-term traffic flow.
Specifically, this customized framework consists of four com-
ponents: i) a normal feature extraction module, ii) a sequential
representation learning module, iii) a periodic representation
learning module and iv) a temporally-varying fusion module.
The middle two components are implemented by two parallel
ATFMs for contextual dependencies modeling at different
temporal scales, while the temporally-varying fusion module
is proposed to adaptively merge the two separate temporal
representations for traffic flow prediction. Finally, we extend
and improve this framework to predict long-term traffic flow
with an extra LSTM prediction network. Notice that our
framework is general. Besides citywide traffic flow prediction,
it can also be applied to extensive traffic tasks (e.g., citywide
passenger demand prediction, crowd flow prediction), if the
following preprocessing procedures are satisfied: i) the studied
city is divided into a regular grid map and the raw traffic
data is transformed into tensors, which is the most common
form of structured data to fit the deep neural networks; ii) the
sequential data and periodic data have been recorded; iii) the
external factors (e.g., holiday information and meteorology
information) are available, or else this submodule can be
directly ignored.

In summary, the contributions of this work are three-fold:
• We propose a novel neural network module called Atten-

tive Traffic Flow Machine (ATFM), which incorporates
two ConvLSTM units with an attention mechanism to
infer the evolution trend of traffic flow via dynamic
spatial-temporal feature representations learning.

• We integrate the proposed ATFM in a customized
deep framework for citywide traffic flow prediction,
which effectively incorporates the sequential and periodic
dependencies with a temporally-varying fusion module.

• Extensive experiments on two public benchmarks of
traffic flow prediction demonstrate the superiority of the
proposed method.

A preliminary version of this work is published in [21].
In this work, we inherit the idea of dynamically learning the
spatial-temporal representations and provide more details of
the proposed method. Moreover, we extend this customized
framework to forecast long-term traffic flow. Further, we con-
duct a more comprehensive ablation study on our method
and present more comparisons with state-of-the-art models
under different settings (e.g., weekday, weekend, day and
night). Finally, we apply the proposed method to forecast the
passenger pickup/dropoff demands and show that our method
is generalizable to various traffic prediction tasks.

The rest of this paper is organized as follows. First,
we review some related works of traffic flow analysis in
Section II and provide some preliminaries of this task
in Section III. Then, we introduce the proposed ATFM
in Section IV and develop two unified frameworks to
forecast short-term/long-term traffic flow in Section V.
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Extensive evaluation and comparisons are conducted in
Section VI. Finally, we conclude this paper in Section VII.

II. RELATED WORK

A. Traffic Flow Analysis

As a crucial task in ITS, traffic flow analysis has been
studied for decades [22], [23] due to its wide applications
in urban traffic management and public safety monitoring.
Traditional approaches [8], [24], [25] usually used time series
models (e.g., Vector Auto-Regression [26], ARIMA [27] and
their variants [22]) for traffic flow prediction. However, most
of these earlier methods modeled the evolution of traffic flow
for each individual location separately and cannot well capture
the complex spatial-temporal dependency.

Recently, deep learning based methods have been widely
used in various traffic-related tasks [28]–[32]. Inspired by
these works, many researchers have attempted to address
traffic flow prediction with deep learning algorithms. For
instance, an artificial neural network termed ST-ANN [7] was
proposed to forecast traffic flow by extracting both the spatial
(values of 8 regions in the neighborhood) and temporal (8 pre-
vious time intervals) features. In [12], a DNN-based model
DeepST was proposed to capture various temporal properties
(i.e. temporal closeness, period and trend). In [7], a deep
ST-ResNet framework was developed with ResNet [33] to
leverage the temporal closeness, period and trend information
for citywide traffic flow prediction. Xu et al. [13] designed a
cascade multiplicative unit to model the dependencies between
multiple frames and applied it to forecast the future traffic
flow. Zhao et al. [15] proposed a unified traffic forecast model
based on long short-term memory network for short-term
traffic flow forecast. Geng et al. [34] developed a multi-graph
convolution network to encode the non-Euclidean pair-wise
correlations among regions for spatiotemporal forecasting.
Currently, to overcome the scarcity of traffic flow data,
Wang et al. [35] proposed to learn the target city model from
the source city model with a region based cross-city deep
transfer learning algorithm. Yao et al. [36] incorporate the
meta-learning paradigm into networks to tackle the problem
of traffic flow prediction for the cities with only a short period
of data collection. However, the above-mentioned algorithms
have two major disadvantages. First, some of them [7], [12],
[13] simply employed convolution operations to extract tempo-
ral features and could not fully explore the temporal patterns.
Second, all of them neglected the dynamic dependencies of
spatial regions and failed to capture complex spatial patterns.
In contrast, our ATFM incorporates two progress ConvLSTM
units with a spatial attention map to effectively learn dynamic
spatial-temporal features.

B. Temporal Sequences Modeling

Recurrent neural network (RNN) is a special class of
artificial neural network for temporal sequences modeling.
As an advanced variation, Long Short-Term Memory Net-
works (LSTM) enables RNNs to store information over
extended time intervals and exploit longer-term temporal
dependencies. Recently, LSTM has been widely applied to

various sequential prediction tasks, such as natural language
processing [37] and speech recognition [38]. Many works in
computer vision community [39]–[41] also combined CNN
with LSTM to model the spatial-temporal information and
achieved substantial progress in various tasks, such as video
prediction. For instance, in [39], a Video Pixel Network (VPN)
learned the temporal relationships of previous frames in video
with ConvLSTM to forecast the content of the next several
frames. A predictive neural network (PredNet [40]) used
multiple LSTM-based layers to predict future frames in a video
sequence, with each layer making local predictions and only
forwarding deviations from those predictions to subsequent
layers. PredRNN [41] utilized some stacked spatial-temporal
LSTM layers to memorize both spatial and temporal variations
of input frames. Without doubts, these models can be imple-
mented and retained to forecast traffic flow, but they mainly
focus on temporal modeling and are not aware of the dynamic
spatial dependencies of traffic flow.

Inspired by the success of the aforementioned works, many
researchers [42]–[44] have attempted to address traffic flow
prediction with recurrent neural networks. However, existing
works simply apply LSTM to extract feature and also cannot
fully model the spatial-temporal evolution of traffic flow. Thus,
a comprehensive module that can simultaneously learn the
dynamic dependencies of both spatial view and temporal view
is extremely desired for traffic flow prediction.

C. Attention Mechanism

Visual attention [17], [18] is a fundamental aspect of the
human visual system, which refers to the process by which
humans focus the computational resources of their brain’s
visual system to specific regions of the visual field while per-
ceiving the surrounding world. It has been recently embedded
in deep convolution networks or recurrent neural networks to
adaptively attend on mission-related regions while processing
feedforward operations [45], [46]. For instance, in the task of
visual question answering, Xu and Saenko [47] chose some
question-related regions dynamically with spatial attention to
answer the questions about a given image. In crowd counting,
Liu et al. [19] utilized an attention mechanism to select some
local regions of the input image and then conducted local den-
sity map refinement. Tay et al. [20] integrated person attributes
and attribute attention maps into a classification framework to
solve the person re-identification problem. Inspired by these
work, our ATFM computes the attention weights of spatial
regions at each time intervals and incorporates two ConvLSTM
units to dynamically learn the spatial-temporal representations.
Thanks to this simple yet effective attention mechanism, our
method can favorably model the dynamic spatial-temporal
dependencies of traffic flow.

III. PRELIMINARIES

In this section, we first introduce some basic elements of
traffic flow and then elaborate the definition of the traffic flow
prediction problem.

A. Region Partition

There are many ways to divide a city into multiple regions
in terms of different granularities and semantic meanings, such
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as road network [11] and zip code tabular [48]. In this work,
we follow the previous work [12] to partition a city into
h × w non-overlapping grid map based on the longitude and
latitude. Each rectangular grid represents a different geograph-
ical region in the city. All partitioned regions of Beijing and
New York City are shown in Fig.1. With this simple partition
strategy, the raw mobility data could be easily transformed
into a matrix or tensor, which is the most common format of
input data of the deep neural networks.

B. Traffic Flow Map

In some practical applications, we can extract a mass of
taxicabs/bikes trajectories from GPS signals or mobile phone
signals. With these trajectories, we measure the number of
vehicles/bikes entering or leaving a given region at each time
interval, which are called as inflow and outflow in our work.
For convenience, we denote the traffic flow map at the t th time
interval of dth day as a tensor M t

d ∈ R2×h×w , in which the
first channel is the inflow and the second channel denotes the
outflow. Some examples of traffic flow maps are visualized
in Fig. 11.

C. External Factors

As mentioned in [7], traffic flow can be affected by many
complex external factors. For example, a sudden rain may
seriously affect the traffic flow evolution and people would
gather in some commercial areas for celebration on New
Year’s Eve. In this paper, we also consider the effect of
meteorology information and holiday information, and their
detail descriptions on different benchmarks can be found in
Section VI-A.

i) Meteorological preprocessing: Some meteorology factors
(e.g., weather condition, temperature and wind speed) can be
collected from a public website Wunderground.2 Specifically,
the weather condition is categorized into multiple categories
(e.g., sunny and rainy) and it is digitized with One-Hot
Encoding [49], while temperature and wind speed are scaled
into the range [0, 1] with a min-max linear normalization.

ii) Holiday preprocessing: Multiple categories of holiday
(e.g., Chinese Spring Festival and Christmas) can be acquired
from a calendar and encoded into a binary vector with One-Hot
Encoding. We concatenate all data of external factors to a 1D
tensor. The tensor of external factors at the t th time interval
of dth day is represented as Et

d in the following sections.

D. Traffic Flow Prediction

Given the historical traffic flow maps and data of external
factors until the t th time interval of dth day, we aim to predict
the traffic flow map Mt+1

d , which is called as short-term
prediction in our work. Moreover, we also extend our model to
conduct long-term prediction, in which we forecast the traffic
flow at the next several time intervals.

IV. ATTENTIVE TRAFFIC FLOW MACHINE

In this section, we propose a unified neural network,
named Attentive Traffic Flow Machine (ATFM), to learn

2https://www.wunderground.com/

Fig. 2. Overview of the proposed Attentive Traffic Flow Machine (ATFM).
Xi is the normal traffic flow feature of the i th iteration. “

⊕
” denotes a feature

concatenation operation and “�” refers to an element-wise multiplication
operation. The first ConvLSTM unit takes Xi as input and incorporates the
historical information to dynamically generate a spatial attention map Wi .
The second ConvLSTM unit learns a more effective spatial-temporal feature
representation from the attentionally weighted traffic flow features.

the spatial-temporal representations of traffic flow. ATFM
is designed to adequately capture various contextual depen-
dencies of the traffic flow, e.g., the spatial consistency and
the temporal dependency of long and short term. As shown
in Fig. 2, the proposed ATFM consists of two progressive
ConvLSTM units connected with a convolutional layer for
attention weight prediction at each time step. Specifically,
the first ConvLSTM unit learns temporal dependency from the
normal traffic flow features, the extraction process of which is
described in Section V-A.1. The output hidden state encodes
the historical evolution information and it is concatenated
with the current traffic flow feature for spatial weight map
inference. The second ConvLSTM unit takes the re-weighted
traffic flow features as input at each time-step and is trained
to recurrently learn the spatial-temporal representations for
further traffic flow prediction.

Let us denote the input feature of traffic map at the i th

iteration as Xi ∈ Rc×h×w , with h, w and c representing the
height, width and the number of channels. At each iteration,
the first ConvLSTM unit takes Xi as input and updates its
memorized cell state C1

i with an input gate I1
i and a forget

gate F1
i . Meanwhile, it updates its new hidden state H 1

i
with an output gate O1

i . The computation process of our first
ConvLSTM unit is formulated as:
I1

i = σ
(
wxi ∗ Xi + whi ∗ H 1

i−1 + wci � C1
i−1 + bi

)

F1
i = σ

(
wx f ∗ Xi + wh f ∗ H 1

i−1 + wc f � C1
i−1 + b f

)

C1
i = F1

i � C1
i−1+ I1

i � tanh
(
wxc ∗ Xi + whc ∗ H 1

i−1+ bc

)

O1
i = σ

(
wxo ∗ Xi + who ∗ H 1

i−1 + wco � C1
i + b0

)

H 1
i = O1

i � tanh
(

C1
i

)
(1)

where wαβ (α ∈ {x, h, c} , β ∈ {i, f, o, c}) are the parameters
of convolutional layers in ConvLSTM. σ denotes the logistic
sigmoid function and � is an element-wise multiplication
operation. For notation simplification, we denote Eq.(1) as:

H 1
i , C1

i = ConvLSTM(H 1
i−1, C1

i−1, Xi ). (2)

Generated from the memorized cell state C1
i , the new hidden

state H 1
i encodes the dynamic evolution of historical traffic

flow in temporal view.
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Fig. 3. The architecture of SPN based on ATFM for citywide short-term traffic flow prediction. It consists of four components: (1) a normal feature extraction
(NFE) module, (2) a sequential representation learning (SRL) module, (3) a periodic representation learning (PRL) module and (4) a temporally-varying
fusion (TVF) module. {M, E}i

j denotes the traffic flow map Mi
j and external factors tensor Ei

j at the i th time interval of the j th day. Fi
j is the embedded

feature of Mi
j and Ei

j . S f and Pf are sequential representation and periodic representation, while external factors integrative feature E f is the element-wise
addition of external factors features of all relative time intervals. “

⊕
” refers to feature concatenation. The symbols r and (1 − r) reflect the importance of

S f and Pf respectively. M̂t+1
d is the predicted traffic flow map.

We then integrate a deep attention mechanism to dynami-
cally model the spatial dependencies of traffic flow. Specif-
ically, we incorporate the historical state H 1

i and current
state Xi to infer an attention map Wi , which is implemented
by:

Wi = Conv1×1(H 1
i ⊕ Xi , wa), (3)

where ⊕ denotes a feature concatenation operation and wa is
the parameters of a convolutional layer with a kernel size of
1 × 1. The attention map Wi is learned to discover the weights
of each spatial location on the input feature map Xi .

Finally, we learn a more effective spatial-temporal represen-
tation with the guidance of attention map. After reweighing
the normal traffic flow feature map by multiplying Xi and Wi

element by element, we feed it into the second ConvLSTM
unit and generate a new hidden state H 2

i ∈ Rc×h×w , which is
expressed as:

H 2
i , C2

i = ConvLSTM(H 2
i−1, C2

i−1, Xi � Wi ), (4)

where H 2
i encodes the attention-aware content of current input

as well as memorizes the contextual knowledge of previous
moments. When the elements in a sequence of traffic flow
maps are recurrently fed into ATFM, the last hidden state
encodes the information of the whole sequence and it can
be used as the spatial-temporal representation for evolution
analysis of future flow map.

V. CITYWIDE TRAFFIC FLOW PREDICTION

In this section, we first develop a deep neural network
framework which incorporates the proposed ATFM for city-
wide short-term traffic flow prediction. We then extend this
framework to predict long-term traffic flow with an extra
LSTM prediction network. Notice that our framework is
general and can be applied for other traffic prediction tasks,
such as the citywide passenger demand prediction described
in Section VI-E.

Fig. 4. The architecture of the subnetwork for normal feature extraction.
It is designed as a concatenation of the embedded traffic flow feature and the
external factor feature. Conv16 is a convolutional layer with 16 channels and
FC-k denotes a fully-connected layer with k output neurons.

A. Short-Term Prediction

As illustrated in Fig. 3, our short-term prediction framework
consists of four components: (1) a normal feature extraction
(NFE) module, (2) a sequential representation learning (SRL)
module, (3) a periodic representation learning (PRL) module
and (4) a temporally-varying fusion (TVF) module. First,
the NFE module is used to extract the normal features of
traffic flow map and external factors tensor at each time
interval. Second, the SRL and PRL modules are employed
to model the contextual dependencies of traffic flow at two
different temporal scales. Third, the TVF module adaptively
merges the feature representations of SRL and PRL with
the fused weight learned from the comprehensive features of
various factors. Finally, the fused feature map is fed to one
additional convolution layer for traffic flow map inference. For
convenience, this framework is denoted as Sequential-Periodic
Network (SPN) in following sections.

1) Normal Feature Extraction: We first describe how to
extract the normal features of traffic flow and external factors,
which will be further fed into the SRL and PRL modules for
dynamic spatial-temporal representation learning.

As shown in Fig. 4, we utilize a customized ResNet [33] to
learn feature embedding from the given traffic flow map Mi

j .
Specifically, our ResNet consists of N residual units, each
of which has two convolutional layers with channel number
of 16 and kernel size of 3 × 3. To maintain the resolution
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h × w, we set the stride of all convolutional layers to 1 and
do not adopt any pooling layers in ResNet. Following [7],
we first scale Mi

j into the range [−1, 1] with a min-max linear
normalization and then feed it into the ResNet to generate the
traffic flow feature, which is denoted as Fi

j (M) ∈ R16×h×w .
Then, we extract the feature of the given external factors

tensor Ei
j with a Multilayer Perceptron. We implement it

with two fully-connected layers. The first layer has 40 output
neurons and the second one has 16 × h × w output neurons.
We reshape the output of the last layer to form the 3D external
factor feature Fi

j (E) ∈ R16×h×w . Finally, we fuse Fi
j (M) and

Fi
j (E) to generate an embedded feature Fi

j , which is expressed
as:

Fi
j = Fi

j (M) ⊕ Fi
j (E), (5)

where ⊕ denotes feature concatenation. Fi
j is the normal

feature at a specific time interval and it is unaware of the
dynamic spatial dependencies of traffic flow. Thus, the fol-
lowing two modules are proposed to dynamically learn the
spatial-temporal representation.

2) Sequential Representation Learning: The evolution of
citywide traffic flow is usually affected by the recent traffic
states. For instance, a traffic accident occurring on a main
road of the studied city during morning rush hours may
seriously affect the traffic flow of nearby regions in subsequent
time intervals. In this subsection, we develop a sequential
representation learning (SRL) module based on the proposed
ATFM to fully model the evolution trend of traffic flow.

First, we take the normal traffic flow features of several
recent time intervals to form a group of sequential temporal
features, which is denoted as:

Sin = {Ft−k
d

∣∣k = n − 1, n − 2, . . . , 0}, (6)

where n is the length of the sequentially related time inter-
vals. We then apply the proposed ATFM to learn sequential
representation from the temporal features Sin . As shown
on the left of Fig. 3, at each iteration, ATFM takes one
element in Sin as input and learns to selectively memorize the
spatial-temporal context of the sequential traffic flow. Finally,
we get the sequential representation S f ∈ R16×h×w by feeding
the last hidden state of ATFM into a 1 × 1 convolution layer.
S f encodes the sequential evolution trend of traffic flow.

3) Periodic Representation Learning: In urban trans-
portation systems, there exist some periodicities which make a
significant impact on the changes of traffic flow. For example,
the traffic conditions are very similar during morning rush
hours of consecutive workdays, repeating every 24 hours.
Thus, in this subsection, we propose a periodic representa-
tion learning (PRL) module that fully captures the periodic
dependencies of traffic flow with the proposed ATFM.

Similar to the sequential representation learning, we first
construct a group of periodic temporal features

Pin = {Ft+1
d−k

∣∣k = m, m − 1, . . . , 1}, (7)

where n is the length of the periodic days. At each iteration,
we feed one element in Pin into ATFM to dynamically learn
the periodic dependencies, as shown on the right of Fig. 3.

After the last iteration, we feed the hidden state of ATFM into
a 1 × 1 convolutional layer to generate the final periodic rep-
resentation Pf ∈ R16×h×w . Encoding the periodic evolution
trend of traffic flow, P f is proved to be effective for traffic
prediction in our experiments.

4) Temporally-Varying Fusion: As described in the two
previous modules, the future traffic flow is affected by the
sequential representation S f and the periodic representation
Pf simultaneously. We find that the relative importance of
these two representations is temporally dynamic and it is
suboptimal to directly concatenate them without any specific
preprocessing. To address this issue, we propose a novel
temporally-varying fusion (TVF) module to adaptively fuse the
representations S f and Pf with different weights learned from
the comprehensive features of various internal and external
factors.

In TVF module, we take the sequential representation S f ,
the periodic representation Pf and the external factors integra-
tive feature E f to determine the fusion weight. Specifically,
E f is the element-wise addition of the external factors features
{F(E)t−k

d

∣∣k = n −1, n −2, . . . , 0} and {F(E)t+1
d−k

∣∣k = m, m −
1, . . . , 1}. As shown in Fig. 3, we first feed the concatenation
of S f , P f and E f into two fully-connected layers for fusion
weight inference. The first layer has 32 output neurons and
the second one has only one neuron. We then obtain the fusion
weight of S f by applying a sigmoid function on the output of
the second FC layer. The weight of Pf is automatically set
to 1 − r . We then fuse these two temporal representations on
the basis of the learned weights and compute a comprehensive
spatial-temporal representation SP f as:

SP f = r × S f ⊕ (1 − r) × Pf , (8)

where SP f contains the sequential and periodic dependencies
of traffic flow.

Finally, we feed SP f into a 1 × 1 convolutional layer with
two filters to predict the future traffic flow map M̂t

d ∈ R2×h×w

with following formula:
M̂t

d = tanh(SP f ∗ wp). (9)

where wp is the parameters of the predictive convolutional
layer and the hyperbolic tangent tanh ensures the output
values are within the range [−1, 1]. Further, the predicted map
M̂t

d is re-scaled back to normal value with an inverted min-max
linear normalization.

B. Long-Term Prediction

In this subsection, we extend our method to predict the
longer-term traffic flow. With a similar setting of short-term
prediction, we incorporate the sequential data and periodic data
at previous time intervals to forecast the traffic flow at the next
four time intervals. For convenience, we denote this model as
SPN-LONG in the following sections.

The architecture of our SPN-LONG is shown in Fig 5.
For each previous time interval, we first extract its normal
features Fi

j with the proposed NFE module. Then, the features

in {Ft−k
d

∣∣k = n − 1, n − 2, . . . , 0} are recurrently fed into
ATFM to learn the sequential representation. The output
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Fig. 5. The architecture of the SPN-LONG for Long-term Traffic Flow Prediction. Fi
j is the normal traffic flow feature described in Section V-A.1. Et+i

f

is the element-wise addition of external factors features {Et−k
d

∣∣k = n − 1, . . . , 0} and {Et+i
d−k

∣∣k = m, . . . , 1}.

TABLE I

THE OVERVIEW OF TAXIBJ AND BIKENYC DATASETS. “# TAXIS/BIKES” DENOTES THE NUMBER OF TAXIS

OR BIKES IN THE DATASETS. OTHER TEXTS WITH “#” HAVE SIMILAR MEANINGS

sequential representation is then fed into a LSTM prediction
network. With four ConvLSTM units, this prediction network
is designed to forecast the traffic flow at the next four time
intervals. Specifically, at i th LSTM, we use a TVF module
to adaptively fuse its hidden state and the periodic repre-
sentation learned from {Ft+i

d−k

∣∣k = m, . . . , 1}. The external
factors integrative feature Et+i

f is the element-wise addition of

{Et−k
d

∣∣k = n − 1, . . . , 0} and {Et+i
d−k

∣∣k = m, . . . , 1}. Finally,
we take the output of i th TVF module to predict M̂t+i

d with
a convolutional layer.

VI. EXPERIMENTS

In this section, we first introduce the commonly-used bench-
marks and evaluation metrics of citywide traffic flow predic-
tion. Then, we compare the proposed approach with several
state-of-the-art methods under different settings. Furthermore,
we conduct extensive component analysis to demonstrate the
effectiveness of each part in our model. Finally, we apply
the proposed method to passenger pickup/dropoff demands

forecasting and show its generalization for other traffic pre-
diction tasks.

A. Experimental Setting

1) Dataset: In this work, we forecast the inflow and out-
flow of citywide transportation entities on two representative
benchmarks, including the TaxiBJ dataset [7] for taxicab
flow prediction and the BikeNYC dataset [12] for bike flow
prediction. These two datasets can be accessed publicly and
various comparison algorithms can be evaluated on the same
testing sets for fair comparisons. The summaries of TaxiBJ
and BikeNYC are shown in Table I3.

TaxiBJ Dataset: In this dataset, a mass of taxi GPS tra-
jectories are collected from 34 thousand taxicabs in Beijing
for over 16 months. The time interval is half an hour and
22,459 traffic flow maps with size 32 × 32 are generated from
these trajectory data. The external factors contain weather
conditions, temperature, wind speed and 41 categories of

3The details of TaxiBJ and BikeNYC dataset are from quoted from [7].
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holidays. This dataset is officially divided into a training set
and a testing set. The number of testing data is around 6%
of that of training data. Specifically, the data in the last four
weeks are used for evaluation and the rest data are used for
training.

BikeNYC Dataset: Generated from the NYC bike trajectory
data for 182 days, this dataset contains 4,392 traffic flow maps
with a time interval of one hour and the size of these maps
is 16 × 8. As for external factors, 20 holiday categories are
recorded. This dataset has the similar training-testing ratio of
TaxiBJ. Specifically, the data of the first 172 days are used for
training and the data of the last ten days are chosen to be the
testing set.

2) Implementation Details: We adopt the PyTorch [50]
toolbox to implement our traffic flow prediction network.
The sequential length n and the periodic length m are set to
4 and 2, respectively. For fair comparison with ST-ResNet [7],
we develop the customized ResNet in Section V-A.1 with
12 residual units on the TaxiBJ dataset and 4 residual units on
the BikeNYC dataset. The filter weights of all convolutional
layers and fully-connected layers are initialized by Xavier [51].
The size of a minibatch is set to 64 and the learning rate
is 10−4. We optimize the parameters of our network in an end-
to-end manner via Adam optimization [52] by minimizing the
Euclidean loss.

3) Evaluation Metric: In traffic flow prediction, Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE) are
two popular evaluation metrics used to measure the perfor-
mances of related methods. Specifically, they are defined as:

RMSE =
√√√√1

z

z∑
i=1

(Ŷi − Yi )
2
, MAE = 1

z

z∑
i=1

|Ŷi − Yi | (10)

where Ŷi and Yi represent the predicted flow map and its
ground truth, respectively. z indicates the number of samples
used for validation. Noted that some partitioned regions in
New York City are water areas and their flow are always zero,
which may decrease the mean error and affect the evaluation of
algorithm performance. To correctly reflect the performance of
different methods on BikeNYC dataset, we re-scale their mean
errors with a ratio (1.58) provided by ST-ResNet.

B. Comparison for Short-Term Prediction

In this subsection, we compare the proposed method with
ten typical methods for short-term traffic flow prediction.
These compared methods can be divided into three categories,
including: (i) traditional models for time series forecasting,
(ii) deep learning networks particularly designed for traffic
flow prediction and (iii) the state-of-the-art approaches orig-
inally designed for some related tasks. The details of the
compared methods are described as follows.

• HA: Historical Average (HA) is a simple model that
directly predicts the future traffic flow by averaging the
historical flow in the corresponding periods. For example,
the predicted flow at 7:00 am to 7:30 am on a specific
Tuesday is the average flow from 7:00 am to 7: 30 am
on all historical Tuesdays.

TABLE II

QUANTITATIVE COMPARISONS ON TAXIBJ AND BIKENYC. OUR METHOD
OUTPERFORMS THE EXISTING METHODS ON BOTH DATASETS

• ARIMA [27]: Auto-Regressive Integrated Moving Aver-
age (ARIMA) is a famous statistical analysis model that
uses time series data to predict future trends.

• SARIMA [22]: Seasonal ARIMA (SARIMA) is an
advanced variant of ARIMA that considers the seasonal
terms.

• VAR [26]: Vector Auto-Regression (VAR) is a
well-known stochastic process model and it can capture
the linear interdependencies among multiple time series.

• DeepST [12]: This is a DNN-based model and it utilizes
various temporal properties to conduct prediction.

• ST-ANN [7]: As an artificial neural network, this model
extracts spatial (8 nearby region values) and temporal
(8 previous time intervals) features for future traffic flow
prediction.

• ST-ResNet [7]: As an advanced version of DeepST, this
model incorporates the closeness, period, trend data as
well as external factors to predict traffic flow with residual
networks.

• VPN [39]: Video Pixel Networks (VPN) is a probabilistic
video model designed for multi-frames prediction. A vari-
ant of VPN based on RMBs is implemented for traffic
flow prediction.

• PredNet [40]: As a predictive neural network, this model
is originally developed to predict the content of subse-
quent frame in a video sequence. We apply this method
to traffic flow prediction.

• PredRNN [41]: This method is also originally designed
for video generation and it is implemented by memorizing
both spatial and temporal variations of input frames with
a predictive recurrent neural network for future frames
generation. In this work, it is re-implemented to forecast
traffic flow.

1) Comparison on All Time Intervals: The performance of
the proposed method and the other ten compared methods are
summarized in Table II. Among these methods, the baseline
model is HA that obtains a RMSE of 57.79 on the TaxiBJ
dataset and 21.57 on the BikeNYC dataset. Although having
some progress, the traditional time series algorithms (e.g.,
VAR, ARIMA, and SARIMA) still show inferior performance
on both datasets, since these shallow models rely on hand-
crafted features and have weak capacity to model complex
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patterns. Thanks to the deep representation learning, the recent
CNN-based methods ST-ANN, DeepST, and ST-ResNet can
decrease the errors to some extent. For instance, ST-ResNet
reduces the RMSE to 16.59 on TaxiBJ and to 6.37 on
BikeNYC. However, only with CNN features, these models
fail to fully capture the temporal patterns. When applying
recurrent neural networks to model the temporal evolution
of traffic flow, the RNN-based methods VPN, PredNet and
PredRNN can defeat the aforementioned CNN-based models.
Nevertheless, the dynamic spatial dependencies of traffic flow
are neglected in these methods and this task still cannot be
solved perfectly. In contrast, our method can further improve
the performance by explicitly learning the spatial-temporal fea-
ture and dynamically modeling the spatial attention weighting
of each spatial influence. Specifically, our method achieves
a RMSE of 15.31 on the TaxiBJ dataset, outperforming the
previous best approach PredRNN by 6.3% relatively. On
the BikeNYC dataset, our method also boosts the highest
prediction accuracy, i.e., decreases the RMSE from 5.99 to
5.59, and outperforms other methods.

Notice that the official BikeNYC dataset does not contain
meteorological information. To enrich the external factors of
BikeNYC, we collect the information of weather conditions
(31 types), temperature ([−1.1, 33.9]) and wind speed ([0, 33])
from the popular meteorological website Wunderground. That
meteorological information is processed with the same tech-
nique described in Section III. After combining these factors,
our method further decreases the RMSE and MAE to 5.50
and 2.71, respectively. For fair comparison with other methods,
we mainly report the performance trained with the official
BikeNYC dataset in the following sections.

2) Comparison on Different Time Intervals: As previously
described, traffic flow is time-varying and its temporal patterns
are very complex. To explore the model’s stability, we com-
pare the performance of five deep learning-based methods at
different time intervals, such as weekday (from Monday to
Friday), weekend (Saturday and Sunday), day (from 6:00 to
18:00) and night (from 18:00 to 6:00). As shown in Fig. 6
and Fig. 7, our method outperforms other compared methods
under various settings on both TaxiBJ and BikeNYC, since
our ATFM can effectively learn the temporal patterns of traffic
flow and the Temporally-Varying Fusion module can flexibly
combine the information of different temporal sequences.
These experiments well demonstrate the robustness of our
method.

3) Comparison on High-Flow Regions: Since traffic flow is
not uniformly distributed in space, some specific applications
are more concerned about the predicted results on congested
regions. In this section, we further measure the RMSE on
some regions with high traffic flow. We first rank all regions
of Beijing on the basis of the average traffic flow on the
training set and then choose the top-p regions ( p is a per-
centage) to conduct the evaluation. As shown in Fig. 8, on
the TaxiBJ dataset, the RMSE of five deep learning-based
methods are much larger on the top-10% regions and our
method obtains a RMSE of 32.11, which shows that this task
still has a lot of room for improvement. As the percentage
p increases, the RMSE of all methods gradually decrease.

Fig. 6. The RMSE of weekday, weekend, day and night on the TaxiBJ
dataset. The weekday RMSE is the average result from Monday to Friday,
while the weekend RMSE is the average result of Saturday and Sunday. The
day RMSE and the night RMSE are the average result from 6:00 to 18:00 and
from 18:00 to 6:00, respectively. Best view in color.

Fig. 7. The RMSE of weekday, weekend, day and night on the BikeNYC
dataset.

Fig. 8. The RMSE of five deep learning based methods on top-p regions
with high traffic flow on the TaxiBJ dataset. p is a percentage. Specifically,
we first rank all regions of Beijing on the basis of the average traffic flow
and then conduct evaluations on the top-p regions. Best view in color.

As shown in Fig. 9, all methods perform poorly on top-10%
regions of BikeNYC, ranging in RMSE from 8.81 to 11.31.
As p increases from 10% to 70%, their errors gradually
decline and no-longer become smaller, since the traffic flow
of the remaining 30% regions is very low. In summary,
our method consistently outperforms other methods under
different flow density range p on both TaxiBJ and BikeNYC.
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Fig. 9. The RMSE of five deep learning based methods on top-p regions
with high traffic flow on the BikeNYC dataset.

TABLE III

RUNNING TIMES OF DIFFERENT METHOD ON BIKENYC DATASET

These comparisons well demonstrate the superiority of our
method.

4) Efficiency Comparison: Finally, we investigate the effi-
ciency of different methods on the TaxiBJ dataset. The running
times of six deep learning-based methods are measured with
an NVIDIA 1060 GPU. As shown in Table III, DeepST costs
0.18 ms for each inference, while ST-ResNet, PredNet and
PredRNN conduct a prediction within 5 ms. Only requiring
7.17 ms, our method is much faster than VPN. In summary, all
methods can achieve practical efficiencies. Therefore, the run-
ning efficiency is not the bottleneck of this task and we should
focus more on the improvement of the performance.

C. Comparison for Long-Term Prediction

In this subsection, we apply the customized SPN-LONG to
predict long-term traffic flow and compare it with four deep
learning based methods.4 These compared methods have been
finetuned for long-term prediction. As shown in Table IV,
the RMSE of all methods gradually increases on the TaxiBJ
dataset when attempting to forecast the longer-term flow.
It can be observed that PredNet performs dreadfully in this
scenario, since it was originally designed for single frame
prediction and has a low capacity for long-term prediction.
By contrast, our method has minor performance degrada-
tion and outperforms other methods at each time interval.
Specifically, our method achieves the lowest RMSE 20.83 at

4On the TaxiBJ dataset, the performances of all compared methods for
long-term prediction are directly quoted from [13]. On the BikeNYC dataset,
there is not existing comparison for long-term prediction, thus we implement
all compared methods and evaluate their performances.

TABLE IV

QUANTITATIVE COMPARISONS (RMSE) FOR LONG-TERM TRAFFIC FLOW
PREDICTION ON TAXIBJ. ALL COMPARED METHODS HAVE BEEN

FINETUNED FOR LONG-TERM PREDICTION. EACH TIME INTERVAL

IS HALF AN HOUR (0.5 H) IN THIS DATASET

TABLE V

QUANTITATIVE COMPARISONS (RMSE) FOR LONG-TERM TRAFFIC

FLOW PREDICTION ON BIKENYC. EACH TIME INTERVAL

IS AN HOUR (1.0 H) IN THIS DATASET

the fourth time interval and has a relative improvement
of 8.2%, compared with the previous best-performing method
PredRNN. Moreover, we also evaluate the original SPN for
long-term prediction and it is used to forecast traffic flow in
a rolling style. As shown in the penultimate row of Table IV,
it performs worse than SPN-LONG, thus we can conclude
that it’s essential to adapt and retrain SPN for long-term
prediction. We also conduct long-term prediction on BikeNYC
dataset. As shown in Table V, our SPN-LONG consistently
outperforms other compared methods with the best RMSE
(e.g., 5.81, 6.80, 7.54 and 7.90 for the 1st -4th time intervals,
respectively). When combining our collected meteorological
information, SPN-LONG further reduces the RMSE to 5.72,
6.24, 6.74 and 7.37 for the 1st -4th intervals, respectively.
These experiments well demonstrate the effectiveness of the
customized SPN-LONG for long-term traffic flow prediction.

D. Component Analysis

As described in Section V, our full model consists
of four components: normal feature extraction, sequential
representation learning, periodic representation learning and
temporally-varying fusion module. In this section, we imple-
ment eight variants of our framework in order to verify the
effectiveness of each component:

• PCNN: directly concatenates the periodic features Pin

and feeds them to a convolutional layer with two filters
followed by tanh for future traffic flow prediction;

• SCNN: directly concatenates the sequential features Sin

and feeds them to a convolutional layer followed by tanh
for future traffic flow prediction;
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Fig. 10. Overview of the differences between all variants of our framework.

• PRNN-w/o-Attention: takes periodic features Pin as
input and learns periodic representation with a LSTM
layer to predict future traffic flow;

• PRNN: takes periodic features Pin as input and learns
periodic representation with the proposed ATFM to pre-
dict future traffic flow;

• SRNN-w/o-Attention: takes sequential features Sin as
input and learns sequential representation with a LSTM
layer for traffic flow estimation;

• SRNN: takes sequential features Sin as input and learns
sequential representation with the proposed ATFM to
predict future traffic flow;

• SPN-w/o-Ext: does not consider the effect of external
factors and directly trains the model with traffic flow
maps;

• SPN-w/o-Fusion: directly merges sequential representa-
tion and periodic representation with equal weight (0.5)
to predict future traffic flow.

The overview of all variants is shown in Fig. 10. First,
we use “SCNN vs. SRNN” and “PCNN vs. PRNN” to verify
the effectiveness of ATFM for sequential and periodic rep-
resentation learning. Then, “SRNN-w/o-Attention vs SRNN”
and “PRNN-w/o-Attention vs PRNN” are conducted to explain
the effectiveness of spatial attention. Finally, “SPN-w/o-Ext
vs. SPN” is utilized to illustrate the influence of external
factors and “SPN-w/o-Fusion vs. SPN” is utilized to show the
effectiveness of Temporally-Varying Fusion (TVF) module.

1) Effectiveness of ATFM for Sequential Representation
Learning: As shown in Table VI, directly concatenating the
sequential features S for prediction, the baseline variant SCNN
gets an RMSE of 17.15. When explicitly modeling the sequen-
tial contextual dependencies of traffic flow using the proposed
ATFM, SRNN decreases RMSE to 15.82, with 7.75% relative
performance improvement compared to the baseline SCNN,
which indicates the effectiveness of the sequential representa-
tion learning.

2) Effectiveness of ATFM for Periodic Representation
Learning: We also explore different network architectures
to learn the periodic representation. As shown in Table VI,
the PCNN, which learns to estimate the flow map by simply
concatenating all of the periodic features P , only achieves
RMSE of 33.91. In contrast, when introducing ATFM to learn

TABLE VI

QUANTITATIVE COMPARISONS OF DIFFERENT VARIANTS OF OUR MODEL
ON THE TAXIBJ DATASET FOR COMPONENT ANALYSIS

the periodic representation, the RMSE drops to 32.89. This
experiment also well demonstrates the effectiveness of the
proposed ATFM for spatial-temporal modeling.

3) Effectiveness of Spatial Attention: As shown in Table VI,
adopting spatial attention, PRNN decreases the RMSE by 0.62,
compared to PRNN-w/o-Attention. For another pair of vari-
ants, SRNN with spatial attention has similar performance
improvement, compared to SRNN-w/o-Attention. Fig. 11 and
Fig. 12 show some attentional maps generated by our method
as well as the residual maps between the input traffic flow
maps and their corresponding ground truth. We can observe
that there is a negative correlation between the attentional
maps and the residual maps to some extent. It indicates that
our ATFM is able to capture informative regions at each
time step and make better predictions by inferring the trend
of evolution. Roughly, the greater difference a region has,
the smaller its weight, and vice versa. We can inhibit the
impacts of the regions with great differences by multiplying
the small weights on their corresponding location features.
With the visualization of attentional maps, we can also get to
know which regions have the primary positive impacts for the
future flow prediction. According to the experiment, we can
see that the proposed model can not only effectively improve
the prediction accuracy, but also enhance the interpretability
of the model to a certain extent.

4) Necessity of External Factors: Without modeling the
effect of external factors, the variant SPN-w/o-Ext obtains a
RMSE of 16.84 on the TaxiBJ dataset and has a performance
degradation of 10%, compared to SPN. The main reason of
degradation lies in that some notable meteorological condi-
tions (e.g., rain and snow) or holidays would seriously affect
the traffic flow. Thus, it’s necessary to incorporate the external
factors to model the traffic flow evolution.

5) Effectiveness of Temporally-Varying Fusion: When
directly merging the two temporal representations with an
equal contribution (0.5), SPN-w/o-fusion achieves a negligible
improvement, compared to SRNN. In contrast, after using
our proposed fusion strategy, the full model SPN decreases
the RMSE from 15.82 to 15.31, with a relative improvement
of 3.2% compared with SRNN. The results show that the
contributions of these two representations are not equal and
are influenced by various factors. The proposed fusion strategy
is effective to adaptively merge the different temporal repre-
sentations and further improve the performance of traffic flow
prediction.
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Fig. 11. Illustration of the generated attention maps of the traffic flow in sequential representation learning with n set as 4. Every five columns form one
group. In each group: i) on the first row, the first four images are the input sequential inflow/outflow maps and the last one is the ground truth inflow/outflow
map of next time interval; ii) on the second row, the first four images are the attentional maps generated by our ATFM, while the last one is our predicted
inflow/outflow map; iii) on the third row, the first four images are the residual maps between the input flow maps and the ground truth, while the last one is
the residual map between our predicted flow map and the ground truth. We can observe that there is a negative correlation between the attentional maps and
the residual maps to some extent.

Fig. 12. Illustration of the generated attentional maps of the traffic flow in periodic representation learning with m set as 2. Every three columns form one
group. In each group: i) on the first row, the first two images are the input periodic inflow/outflow maps and the last one is the ground truth inflow/outflow
map of next time interval; ii) on the second row, the first two images are the attentional maps generated by our ATFM, while the last one is our predicted
inflow/outflow map; iii) on the third row, the first two images are the residual maps between the input flow maps and the ground truth, while the last one is
the residual map between our predicted flow map and the ground truth. We can observe that there is a negative correlation between the attentional maps and
the residual maps to some extent.

6) Further Discussion: To analyze how each temporal
representation contributes to the performance of traffic flow
prediction, we measure the average fusion weights of two tem-
poral representations at each time interval on the testing set.
As shown in the left of Fig. 13, the fusion weights of sequential
representation are greater than that of the periodic representa-
tion. To explain this phenomenon, we further measure i) the
RMSE of traffic flow between two consecutive time intervals,
denoted as “Pre-Hour”, and ii) the RMSE of traffic flow
between two adjacent days at the same time interval, denoted
as “Pre-Day”. As shown on the right of Fig. 13, the RMSE of
“Pre-Day” is much higher than that of “Pre-Hour” at most time
except for the wee hours. Based on this observation, we can
conclude that the sequential representation is more essential
for the traffic flow prediction, since the sequential data is more
regular. Although the weight is low, the periodic representation

still helps to improve the performance of traffic flow prediction
qualitatively and quantitatively. For example, we can decrease
the RMSE of SRNN by 3.2% after incorporating the periodic
representation.

E. Extension to Citywide Passenger Demand Prediction

Our ATFM is a general model for urban mobility modeling.
Apart from the traffic flow prediction, it can also be applied to
other related traffic tasks, such as citywide passenger demand
prediction. In this subsection, we extend the proposed method
to forecast the passenger pickup/dropoff demands at the next
time interval (half an hour) with historical mobility trips.

We conduct experiments with taxi trips in New York City.
Since most taxi transactions were made in the Manhattan
borough, we choose it as the studied area and divide it into
a h×w grid map. We collect 132 million taxicab trip records
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Fig. 13. Left: The average fusion weights of two types of temporal representation on the testing set of TaxiBJ dataset. Right: The RMSE of traffic flow
between two consecutive time intervals (denoted as “Pre-Hour”) and the RMSE of traffic flow between two adjacent days at the same time interval (denoted
as “Pre-Day”). We can find that the weights of sequential representation are greater than that of the periodic representation, which indicates that the sequential
trend is more essential for traffic flow prediction.

TABLE VII

EFFECTIVENESS OF DIFFERENT SPATIAL RESOLUTIONS
FOR SHORT-TERM DEMAND PREDICTION

during 2014 from New York City Taxi and Limousine Com-
mission (NYCTLC5). Each record contains the timestamp and
the geo-coordinates of pickup and dropoff locations. For each
region, we measure the passenger pickup/dropoff demands
every half an hour, thus the dimensionality of passenger
demand maps is 2×h×w. We collect external meteorological
factors (e.g., temperature, wind speed and weather conditions)
from Wunderground and the holidays are also marked. Finally,
we train our model with the historical demand of the first
337 days and conduct evaluation with the data in the last four
weeks.

We first explore the effectiveness of different spatial res-
olutions (h×w). As shown in Table VII, the RMSE and
MAE of our method gradually decrease as the resolution
increases. However, this performance improvement may come
from the corresponding reduction in demand as the unit area
becomes smaller. Moreover, too high resolution may result
in over-divided regions (e.g., a stadium may be divided into
multi regions) and it is unnecessary to forecast taxi demand in
a very small region. In the previous work [53], Didi Chuxing,
a famous taxi requesting company in China, predicted taxi
demand in each 0.7km ×0.7km region. Following this setting,
we divide the Manhattan borough into a 15×7 grid map and
each grid represents a geographical region with a size of about
0.75km × 0.75km.

We then compare our method with HA and five deep
learning based methods. As shown in Table VIII, the baseline
method HA obtains a RMSE of 39.02 and a MAE of 20.24,

5https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

TABLE VIII

QUANTITATIVE COMPARISONS FOR CITYWIDE PASSENGER
SHORT-TERM DEMAND PREDICTION

TABLE IX

QUANTITATIVE COMPARISONS (RMSE) FOR CITYWIDE PASSENGER

LONG-TERM DEMAND PREDICTION. ALL COMPARED METHODS
HAVE BEEN FINETUNED FOR LONG-TERM PREDICTION. EACH

TIME INTERVAL IS HALF AN HOUR (0.5 H) IN THIS DATASET

which is impractical in the taxi industry. By contrast, our
method dramatically decreases the RMSE to 17.29 and out-
performs other compared methods for short-term prediction.
Moreover, we adapt and retrain these deep learning based
methods to forecast the long-term demand and summarize their
RMSE in Table IX. It can be observed that our SPN-LONG
model achieves the best performance at every time interval.
In particular, our method has a performance improvement
of 16.58% compared with PredRNN at the fourth time interval.
These experiments show that the proposed method is also
effective for passenger demand prediction.

VII. CONCLUSION

In this work, we utilize massive human trajectory data
collected from mobility digital devices to study the traffic flow
prediction problem. Its key challenge lies in how to adaptively
integrate various factors that affect the flow changes, such
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as sequential trends, periodic laws and spatial dependencies.
To address these issues, we propose a novel Attentive Traf-
fic Flow Machine (ATFM), which explicitly learns dynamic
spatial-temporal representations from historical traffic flow
maps with an attention mechanism. Based on the proposed
ATFM, we develop a unified framework to adaptively merge
the sequential and periodic representations with the aid of
a temporally-varying fusion module for citywide traffic flow
prediction. By conducting extensive experiments on two public
benchmarks, we have verified the effectiveness of our method
for traffic flow prediction. Moreover, to verify the generaliza-
tion of ATFM, we apply the customized framework to forecast
the passenger pickup/dropoff demand and it can also achieve
practical performance on this traffic prediction task.

However, there is still much room for improvement. First,
it may be suboptimal to divide the studied cities into reg-
ular grid maps. In future work, we would divide them into
traffic analysis zones with irregular shapes on the basis of
the functionalities of regions. We would model such traffic
systems as graphs and adapt Graph Convolutional Network
(GCN [54], [55]) to learn spatial-temporal features. Second,
the functionality information of zones has not been fully
explored in most previous works. Intuitively, the zones with the
same functionalities usually have similar traffic flow patterns.
For instance, most residential regions have high outflow during
morning rush hours and have high inflow during evening rush
hours. Base on this consideration, we plan to incorporate
the prior knowledge of functionality information of zones
(e.g., the Point of Interest (POI) data, land-use data and
socio-demographic data) into GCN to further improve the
prediction accuracy.
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