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Abstract
Benefiting from large-scale vision-language pre-training

on image-text pairs, open-world detection methods have
shown superior generalization ability under the zero-shot
or few-shot detection settings. However, a pre-defined cate-
gory space is still required during the inference stage of ex-
isting methods and only the objects belonging to that space
will be predicted. To introduce a “real” open-world de-
tector, in this paper, we propose a novel method named
CapDet to either predict under a given category list or di-
rectly generate the category of predicted bounding boxes.
Specifically, we unify the open-world detection and dense
caption tasks into a single yet effective framework by in-
troducing an additional dense captioning head to gener-
ate the region-grounded captions. Besides, adding the cap-
tioning task will in turn benefit the generalization of detec-
tion performance since the captioning dataset covers more
concepts. Experiment results show that by unifying the
dense caption task, our CapDet has obtained significant
performance improvements (e.g., +2.1% mAP on LVIS rare
classes) over the baseline method on LVIS (1203 classes).
Besides, our CapDet also achieves state-of-the-art perfor-
mance on dense captioning tasks, e.g., 15.44% mAP on VG
V1.2 and 13.98% on the VG-COCO dataset.

1. Introduction
Most state-of-the-art object detection methods [37, 38,

55] benefit from a large number of densely annotated detec-
tion datasets (e.g., COCO [30], Object365 [40], LVIS [14]).
However, this closed-world setting results in the model only
being able to predict categories that appear in the training
set. Considering the ubiquity of new concepts in real-world
scenes, it is very challenging to locate and identify these
new visual concepts. This predictive ability of new concepts
in open-world scenarios has very important research value
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Figure 1. Comparison of the different model predictions under
OWD, OVD, and our setting. (a) OWD methods [16, 20, 53] are
not able to describe the detailed category of the detected unknown
objects and (b) the performance of OVD methods [9, 14, 45] usu-
ally depends on the pre-defined category list during the inference.
(c) With the unification of two pipelines of dense captioning and
open-world detection pre-training, our CapDet can either predict
under a given category list or directly generate the description of
predicted bounding boxes.

in real-world applications such as object search [32,34], in-
stance registration [50], and human-object interaction mod-
eling [12].

Currently, the open world scenario mainly includes two
tasks: open world object detection [20] (OWD) and open-
vocabulary object detection [49] (OVD). Although the
paradigms of OWD and OVD tasks are closer to the real
world, the former cannot describe the specific concept of
the detected unknown objects and requires a pre-defined
category list during the inference. Specifically, as shown
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in Figure 1, previous OWD methods [16,20,53] would rec-
ognize new concepts not in the predefined category space
as “unknown”. Further, another line of task OVD requires
the model to learn a limited base class and generalize to
novel classes. Compared to the zero-shot object detection
(ZSD) proposed by [36], OVD allows the model to use ex-
ternal knowledge, e.g., knowledge distillation from a large-
scale vision-language pre-trained model [9, 14], image-
caption pairs [49], image classification data [54], grounding
data [28, 45, 51]. With the external knowledge, OVD meth-
ods show a superior generalization capacity to detect the
novel classes within a given category space. However, as
shown in Figure 1, when given an incomplete category list,
OVD can only predict the concepts that appear in the given
category list, otherwise, there will be recognition errors, (
i.e., as illustrated in Figure 1 (b), the OVD methods prone
to predict the “wall socket” as “remote”, since the latter is
in the category list but not the former).

Thus, under the OVD setting, we mainly face the follow-
ing two challenges: (i) it is difficult to define a complete list
of categories; (ii) low response values on rare categories
often lead to recognition errors. This is mainly because
we cannot exhaustively enumerate new objects in the real
world, and secondly, it is difficult to collect enough sam-
ples for rare classes. However, the fact that rare objects in
the real world, even some new objects that are unknown
to humans, such as UFOs, do not prevent people from using
natural language to describe it as “a flying vehicle that looks
like a Frisbee”.

Therefore, based on the above observations, in this pa-
per, we consider a new setting that is closer to the open
world and real scenes, i.e., we expect the model to both
detect and recognize concepts in a given category list, and
to generate corresponding natural language descriptions for
new concepts or rare categories of objects. Early dense cap-
tioning methods [11,19] can locate salient regions in images
and generate the region-grounded captions with natural lan-
guage. Inspired by this, to address the challenges faced in
the OVD setting, we propose to unify the two pipelines of
dense captioning and open-world detection pre-training into
one training framework, called CapDet. It empowers the
model with the ability to both accurately detect and recog-
nize common object categories and generate dense captions
for unknown and rare categories by unifying the two train-
ing tasks.

Specifically, our CapDet constructs a unified data for-
mat for the dense captioning data and detection data. With
the data unification, CapDet further adopts a unified pre-
training paradigm including open-world object detection
and dense captioning pre-training. For open-world detec-
tion pretraining, we treat the detection task as a semantic
alignment task and adopt a dual encoder structure as [45]
to locate and predict the given concepts list. The concepts

list contains category names in detection data and region-
grounded captions in dense captioning data. For dense cap-
tioning pretraining, CapDet proposes a dense captioning
head to take the predicted proposals as input to generate
the region-grounded captions. Due to the rich visual con-
cepts in the dense captioning data , the integration of dense
captioning tasks will in turn benefit the generalization of
detection performance.

Our experiments show that the integration of few dense
captioning data brings in large improvement in the object
detection datasets LVIS, e.g., +2.7% mAP on LVIS. The
unification of dense captioning and detection pre-training
gains an additional 2.3% increment on LVIS and 2.1% in-
crement on LVIS rare classes. Besides, our model also
achieves state-of-the-art performance on dense captioning
tasks. Note that our method is the first to unify dense cap-
tioning and open-world detection pretraining.

To summarize, our contributions are three folds:

• We propose a novel open-vocabulary object detection
framework CapDet, which cannot only detect and rec-
ognize concepts in a given category list but also gen-
erate corresponding natural language descriptions for
new concept objects.

• We propose to unify the two pipelines of dense cap-
tioning and open-world detection pre-training into one
training framework. Both two pre-training tasks are
beneficial to each other.

• Experiments show that by unified dense captioning
task and detection task, our CapDet gains significant
performance improvements on the open-vocabulary
object detection task (e.g., +3.3% mAP on LVIS rare
classes). Furthermore, our CapDet also achieves state-
of-the-art performance on the dense captioning tasks,
e.g., 15.44% mAP on Visual Genome (VG) V1.2 and
13.98% mAP on VG-COCO.

2. Related Work
Vision-Language Pre-training. Vision-Language Pre-
training [7, 18, 35] as a scheme in the domains of natural
language processing [1, 6] and computer vision [8] obtains
continual attention currently. And it exhibits strong per-
formance and generalization ability on various downstream
vision and cross-modal tasks. Among them, CLIP [35]
and ALIGN [18] as dual-stream methods utilize large-scale
image-text pairs on the Internet by cross-modal contrastive
learning to get excellent zero-shot classification ability.
Single-stream methods [22,27] unify visual and textual em-
beddings in a single transformer-based model, which can
perform text generation tasks such as image caption and
VQA. Some mixed architectures [26, 43] combine single-
stream and dual-stream to explore a unified way of vision-
language understanding and generation. However, these
methods take low-resolution images as input and serve the



task of classification and retrieval. Those vision-language
pre-training approaches can not be applied to pure computer
vision task directly, i.e., object detection task.

Open World Object Detection / Open-Vocabulary Ob-
ject Detection. Object detection is a core computer vi-
sion task, which aims at localizing objects using a bound-
ing box and classifying them. The mature detection ap-
proaches which show great performance on supervised data
include one-stage detectors (i.e., YOLO [37], ATSS [52])
having a relatively high detection efficiency and two-stage
detectors (i.e., Faster R-CNN [38], Mask R-CNN [17]) hav-
ing good detection accuracy. However, how to generalize
these methods to rare classes and novel concepts in the real
world is a challenge. Currently, several object detection ap-
proaches for such open-world scenes have attracted exten-
sive attention from academia and industry. These methods
are divided into two tasks which are called open-world ob-
ject detection and open-vocabulary object detection respec-
tively depending on whether to detect the class of unknown
classes.

For the OWD task, Zhao et al. [53] proposed a proposal
advisor to assist in identifying unknown proposals without
supervision and a class-specific expelling classifier to filter
out confusing predictions. For the OVD task, GLIP [28]
converts the detection data into grounding format and pro-
poses a fusion module to learn semantic vision information
in grounding data. K-Lite [42] reconstructs the input for-
mat of the data in GLIP from sequential to parallel and uses
nouns hierarchy and definition to format text sequence. Det-
CLIP [45] unifies detection, grounding, and image-text pair
data in a paralleled formulation and constructs a concept
dictionary to augment the text data, which strikes a bal-
ance between performance and efficiency. Differing from
all these works, our CapDet can generate an open-set cap-
tion of each region proposal to cover situations where the
semantics of new object instances are not in the given cate-
gory list.

Dense Captioning. Dense captioning aims at generating
detailed descriptions for local regions, which usually needs
to locate visual regions with semantic information and gen-
erate captions for these regions. J. Johnson et al. [19] uti-
lized a fully convolutional localization network to locate
regions of interest (RoIs) and then describe them. After-
ward, many methods [29, 47] based on Faster-RCNN [38]
and LSTM [13] are proposed to do dense captioning. X. Li
et al. [29] arrange RoI features as a sequence and put them
into LSTM with the guidance of the region features to form
the complementary object context features. This method
also needs ground truth bounding boxes auxiliary tests to
achieve good results. But limited by the forget gate mech-
anism of LSTM, the inputted sequence cannot be too long.
Then, the transformer-based method TDC [41] is proposed

to tackle the long sequence forgotten problem. Instead, our
CapDet proposes a transformer-based caption head to gen-
erate a caption using a single-stage detector ATSS while si-
multaneously achieving open-world detection.

3. Method
The overview of our proposed CapDet is shown in Fig-

ure 2. To construct a detector to either predict under a given
category list or directly generate the concepts of predicted
bounding boxes, we incorporate detection data and dense
caption data together. In this section, we will present a uni-
fied data format for the detection data and dense caption
data in Section 3.1, the model architecture and pre-training
objectives for open-world object detection pre-training in
Section 3.2 and dense captioning in Section 3.3.

3.1. Unified Formulation

We defined a unified triplet-wise data format
(x, {bi}Ni=1, y

N
i=1) for each sample from different

sources. Specifically, x ∈ R3×h×w is the input im-
age, {bi|bi ∈ R4}Ni=1 denotes the bounding boxes
coordinates for each region of the image, and the yNi=1

represents the concepts of the corresponding boxes. N
denotes the number of regions. A concept yi formatted as
a sentence contains the category and textual description
of the corresponding region. In detection data, a concept
y consists of the category name and the corresponding
definition from the concept dictionary [45], while yi
represents the region-grounded caption in dense caption
data. For example, for an image x in detection data, yi can
be:

yi = “person, a human being.”

For an image x from dense captioning data, yi can be:

yi = “an outlet on the wall.”

With the triplet, we can learn a unified image-text alignment
objective on the detection data and the dense captioning
data. The unified formulation also ensures the joint train-
ing of open-world object detection pre-training and dense
captioning.

3.2. Open-World Object Detection Pre-training

Based on the unified formulation of detection data and
dense captioning data, we regard the captions of regions in
dense captioning data as a kind of category and utilize two
different sources of data for the open-world object detection
pre-training. Compared with the limited class list of detec-
tion data, dense caption data contains richer concepts and
more semantic information than class names of individual
regions. On the other hand, localization and recognition are
two essential tasks of object detection. Traditional object



dense captions: 
cap 1. the catcher is crouched down
cap 2. the umpire of a baseball game
cap 3. mitt on the player’s hand
…
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Figure 2. The overall architecture of CapDet. The training paradigm of CapDet contains open-world object detection pre-training and
dense captioning. In detection, CapDet contains a dual vision-language encoder. The image encoder generates region embeddings from
detection and dense captioning data. The regression loss and centerness loss are introduced to regress the locations. The text encoder takes
the category concepts as input to generate the embeddings from the [EOS] token. Then we treat the detection task as a matching task and
adopt an alignment loss for the category embeddings and region embeddings. In dense captioning, an additional dense captioning head is
proposed to take the region embeddings as input and generate the textual captions for corresponding regions with natural language.

detection always focuses on the salient objects in the image.
While the dense captioning data contains lots of annotations
which are just parts of an object, e.g., an ear of an elephant,
it is not suitable to learn those annotations for the localiza-
tion task. Therefore, we only calculate the localization loss
on detection data.

As shown in Figure 2, CapDet predicts the regions and
treats the recognition task as a region-category matching
task. For efficient learning on the matching task, we adopt
the negative sampling proposed by [45] to provide negative
concepts to enlarge the concept space in a batch. Specif-
ically, for each iteration, we randomly sample a negative
concept set and add to the positive concept set (N samples)
in a batch to obtain the final concept set yMi=1, where M rep-
resents the sum of the number of positive and negative sam-
ples. Finally, we format the triplet to (x, {bi}Ni=1, y

M
i=1).

CapDet contains a dual vision-language encoder and
takes the triplet (x, {bi}Ni=1, y

M
i=1) as input. The image en-

coder Φv is an object detector that can predict the bounding
boxes of regions from the input image x and output the re-
gion features O ∈ RK×D. The text encoder Φl takes the
concept set yMi=1 as input and obtains the text embeddings
W ∈ RM×D from the special token [EOS] concatenated
with the text input. K,D denotes the number of predicted

regions and region feature dimensions. The alignment score
matrix S ∈ RK×M of regions and texts is calculated by:

O = Φv(x),W = Φl(y
M
i=1), S = OWT (1)

where T denotes the transpose operation. A ground-truth
alignment matrix G ∈ {0, 1}K×M is constructed to indicate
the matching relation of regions and concepts. The align-
ment loss Lalign is calculated by the predicted alignment
scores of regions S and the ground-truth alignment matrix
G. Following [28, 45], we adopt the ATSS [52] detector as
an image encoder, and Lalign is typically a sigmoid focal
loss. As a one-stage detector, the localization loss contains
centeredness loss Lcen and bounding box regression loss
Lreg . The training objective of detection pre-training can
be written as:

L =

{
Lalign + αLreg + βLcenter , for detection
Lalign , for dense captioning

(2)
where α and β denote the weights for the centerness loss
Lcen and box regression loss Lreg, respectively. The Lcen

is the sigmoid loss and the Lreg is the GIOU loss [39].



MODEL BACKBONE PRE-TRAIN DATA IMAGES NUMBER
LVIS

AP APr / APc / APf

MASK-RCNN [17] SWIN-T LVIS 0.1M 34.1 19.1 / 34.0 / 37.0
ATSS [52] SWIN-T LVIS 0.1M 33.6 19.7 / 32.4 / 37.2
ATSS [52] SWIN-L LVIS 0.1M 43.9 30.6 / 43.7 / 46.3

MDETR [21] RN101 GOLDG+ 0.77M 24.2 20.9 / 24.3 / 24.2
GLIP-T(A) [28] SWIN-T+DH+F O365 0.66M 18.5 14.2 / 13.9 / 23.4
GLIP-T(C) [28] SWIN-T+DH+F O365,GOLDG 1.43M 24.9 17.7 / 19.5 / 31.0

GLIP-T [28] SWIN-T+DH+F O365,GOLDG,CAP4M 5.43M 26.0 20.8 / 21.4 / 31.0
K-LITE [42] SWIN-T O365 0.66M 21.3 14.8 / 18.6 / 24.8
K-LITE [42] SWIN-T O365,GOLDG 1.43M 26.1 17.2 / 24.6 / 29.0

GLIPV2-T [51] SWIN-T+DH+F O365,GOLDG,CAP4M 5.43M 29.0 - / - / -

DETCLIP-T(A) [45] SWIN-T O365 0.66M 28.8 26.0 / 28.0 / 30.0
DETCLIP-T(B) [45] SWIN-T O365, GOLDG 1.43M 34.4 26.9 / 33.9 / 36.3

DETCLIP-T(C)* [45] SWIN-T O365, VG 0.73M 31.5 27.5 / 30.6 / 33.0

CAPDET (OURS) SWIN-T O365, VG 0.73M 33.8 29.6 / 32.8 / 35.5

Table 1. Zero-shot performance on LVIS [15] MiniVal5k datasets. APr / APc / APf indicate the AP values for rare, common, and frequent
categories, respectively. “DH” and “F” in GLIP [28] baselines stand for the dynamic head [4] and cross-modal fusion, respectively.
Baselines with * are implemented with our code base. GoldG+ denotes the GoldG plus the COCO [30] caption dataset.

3.3. Dense Captioning

The open-world object detection pre-training ensures
CapDet gains the capacity to detect under given an arbitrary
category list. However, when the given category list is not
complete enough to cover the potential classes on a new do-
main data, the detector will perform worse on the categories
which are not in the given list. Considering such limitation,
we propose a dense captioning head ΦC to generate seman-
tically rich concepts with natural language for the predicted
proposals. In the dense captioning task, the model receives
an image and produces a set of regions and the correspond-
ing captions. The dense captioning head is a cross-modal
decoder that takes the c predicted regions features O gen-
erated by the image encoder as input. The captioning (i.e.,
language modeling ) loss is calculated by:

Lcap = − log p(yit|Φc(yi(τ<t), Oi)), (3)

where yit means the t token in caption yi corresponding to
region feature Oi, and yi(τ<t) means tokens before t in cap-
tion yi. The overall pre-training loss can be written as:

L = wdLdet + wcLcap, (4)

where wd, wc denote the weighting factor of Ldet and Lcap.
To minimize the gap in the type of bounding boxes be-

tween the detection data and dense captioning data, we pro-
pose a simple way to transform our detector as a class-
agnostic detector and only select the top k regions based
on the centeredness scores to adapt to the dense captioning

task. We can fine-tune our CapDet on the dense captioning
data to achieve better performance. Specifically, we pro-
pose ”object” as the foreground concept and ”background”
as the background concept. The text encoder Φl outputs
the concept embeddings W ′ ∈ R2×D. Then the alignment
scores S′ ∈ RK×2 is calculated by Eqn. 1. The captioning
head takes the top k most confident proposal embeddings
based on centeredness scores as input to predict the region-
grounded captions.

4. Experiment

Implementation Details. For the image encoder,
we adopt the Swin-T backbone proposed in Swin-
Transformer [31] which is pre-trained on ImageNet-1K [5].
We use 12 layers 8 heads transformer as our text encoder
and load a base model checkpoint released by FILIP [46],
in order to make a fair comparison with DetCLIP [45]. The
structure of the dense captioning head is consistent with
that in the text encoder but trained from scratch for a fair
comparison. We employ AdamW [23] optimizer and set
the batch size to 32. The learning rate is set to 1.4 × 10−4

for the parameters of the image encoder and detection head,
and 1.4 × 10−5 for the text encoder and dense captioning
head. When fine-tuning the VG dataset to do the dense
captioning task, we set the learning rate to 1.4 × 10−4.
Without otherwise specified, all models are trained with
12 epochs and the learning rate is decayed with a factor
of 0.1 at the 8-th and the 11-th epoch. The context token



Figure 3. Qualitative visualizations between GLIP-T, DetCLIP-T(C) and CapDet. From top to down, the three rows of images show the
LVIS zero-shot detection results of GLIP-T, DetCLIP-T(C), and CapDet respectively. All models are pre-trained on O365 and VG.

length for input text is set to 20. We set the number of input
captions to 150, and the number of the region features N
is determined by the feature map. The loss weight factor
wc and wd are both set to 1.0. We build our model on
MMDetection [2] code base.

Dataset. Our CapDet is trained with two types of data,
including detection data and caption data. Following Det-
CLIP [45], we use Object365 [40] (it will be abbreviated
as O365 in the following paper) as detection data, and
sample 0.66M data from O365 v2 for training. Following
GLIP [28] and DetCLIP [45], LVIS [15] MiniVal5k (de-
fined in [21]) which has 5000 images is used for detection
evaluation. Moreover, we remove the training samples con-
tained in the LVIS dataset for fair zero-transfer evaluation.
For dense captioning data, we mainly conduct our experi-
ments on VG [24] V1.2 and VG-COCO (defined in [41]).
Following [41], we allocate 77398 images for training and
5000 images for validation and testing on VG. As demon-
strated in [24], the ground-truth bounding boxes of VG are
much denser than the other object detection datasets, i.e.,
the average number of per sample in MS COCO [30] is only
7.1 vs. 35.4 in VG. Then an intersection of VG V1.2 and MS
COCO is proposed by [41] and is denoted as VG-COCO,
which has 38080 images for training, 2489 for validation,
and 2476 for testing.

Benchmark Settings. We mainly evaluate our method
on open-vocabulary object detection and dense captioning
task. For open-vocabulary object detection, we evaluate the
direct domain transfer on LVIS [15] which contains 1203
categories. Following [28, 45], we metric the zero-shot

detection performance by the Average Precision (AP) on
a 5k subset. The annotations of LVIS data are split into
three folds, i.e., rare, common, and frequency, based on the
number of categories. Since there is almost no overlap be-
tween the rare classes and the classes of training dataset
Objects365 [40], the AP of the rare classes shows a valu-
able zero-shot detection performance. For the dense cap-
tioning task, we follow the setting of [19] to evaluate the
VG and VG-COCO. The evaluation metric we adopt is the
mean Average Precision proposed by [19] which is calcu-
lated across a range of thresholds for both localization and
language accuracy, i.e., the intersection over union (IOU)
thresholds .3, .4, .5, .6, .7 are used for localization and the
METEOR score’ thresholds 0, .05, .1, .15, .2, .25 is adopted
for evaluating the language generation.

4.1. Open-world Detection Results

Table 1 shows our zero-shot object detection perfor-
mance on LVIS. We mainly train our CapDet with the back-
bone Swin-T [31] on the detection data Objects365 [40] and
dense captioning data (VG [24]). Since DetCLIP does not
report the performance on O365 and VG, we train DetCLIP
on the two datasets under the same settings and denote it
as DetCLIP-T(C) for a fair comparison. Comparing the
11th row and 12th row, our CapDet outperforms DetCLIP-
T(C) on the same data scale and backbone with an extra
simple caption head. Moreover, our model’s zero-shot per-
formance even surpasses the fully-supervised model with
the same backbone by a large margin on rare classes, i.e.,
CapDet outperforms ATSS by 9.9%.
Qualitative Visualizations Figure. 3 illustrates the detec-
tion results on LVIS [24] dataset from GLIP-T, DetCLIP-
T(C), and CapDet. All three models are trained on O365
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Figure 4. Qualitative visualizations between JIVC and CapDet. “w/o ft” means do caption without finetune, while “w/ ft” means with
finetune.

and VG, and details are given in Section 4.3. Given a cat-
egory list, the rare classes are detected more precisely by
our CapDet, e.g., “kitchen table” in the first column, “horse
buggy” in the third column, and “fishbowl” in the sixth col-
umn that our model CapDet detects correctly but the other
two not.

4.2. Dense Captioning Results

Due to the target bounding boxes in dense captioning
data containing lots of local structures of objects and being
much denser than the bounding boxes in object detection
data, we do not regress the bounding box in the pre-training
stage. The previous works directly train on the dense cap-
tioning data and generate captions on the top k proposals
ranking by a confidence score. When fine-tuning our model
on the VG dataset for the dense captioning tasks, we trans-
form our CapDet into a class-agnostic detector. Specifically,
we propose “object” as the foreground concept and “back-
ground” as the background concept for computing align-
ment scores. The scores are used as proposal confidences to
predict the region-grounded captions.

Table 2 and Table 3 show CapDet significantly outper-
forms the latest work TDC [41] by 2.5% on mAP on VG
and TDC+ROCSU [41] by 2.08%, respectively. It is worth
noticing that, even against given the ground-truth bound-
ing boxes with the previous method COCG [29] denoted

Method mAP(%)

FCLN [19] 5.16
JIVC [44] 9.96
ImgG [29] 9.68
COCD [29] 9.75
COCG [29] 10.39
CAG-Net [47] 10.51
TDC [41] 11.90

CapDet (Ours) 15.44

Table 2. Comparison of mAP (%) performance on dense caption-
ing benchmark on the VG V1.2 dataset.

as COCOG&GT, our CapDet still gains a 43.80% mAP in-
crease and achieves state-of-the-art. One important reason
is that the excellent detection performance of our model as-
sists the localization ability of dense captioning tasks.
Qualitative Visualizations. Figure 4 shows a qualita-
tive visualization comparison between JIVC [44] and our
CapDet. The three image rows from top to bottom are
the visualization of JIVC, CapDet without fine-tuning, and
CapDet with finetuning. In the second row, CapDet can lo-
cate more objects than JIVC, owing to our model’s superior
localization performance. After finetuning, CapDet can fur-
ther describe a region rather than a single object such as



Method mAP(%)

FCLN [19] 4.23
JIVC [44] 7.85
Max Pooling [29] 7.86
ImgG [29] 7.81
COCD [29] 7.92
COCG [29] 8.90
COCG-LocSiz [29] 8.76
COCG&GT [29] 9.79
TDC+ROCSU [41] 11.9

CapDet (Ours) 13.98

Table 3. Comparison of mAP (%) performance on the dense cap-
tioning benchmark on the VG-COCO Dataset.

MODEL DC HEAD
LVIS

AP APr / APc / APf

GLIP-T ✗ 30.4 22.5 / 29.0 / 33.0
GLIP-T ✓ 33.1 27.0 / 32.1 / 35.0

DETCLIP-T ✗ 31.5 27.5 / 30.6 / 33.0
DETCLIP-T ✓ 33.8 29.6 / 32.8 / 35.5

Table 4. Ablations on integrating our dense captioning head into
different baselines.

Pre-training Data Fine-tune DCap mAP(%) Box mAP(%)

VG ✗ 12.86 27.65
O365,VG ✗ 4.72 9.65

VG ✓ 13.83 28.58
O365,VG ✓ 15.44 30.61

Table 5. Ablations on incorporating data from different sources.
“DCap” stands for the dense caption mAP.

“two women in a kitchen” in the 5-th column.

4.3. Ablation Studies

4.3.1 Ablations for Unified Pre-training

Effect on different baselines. Table 4 investigates the ad-
vantages of dense captioning heads on different baselines.
We integrate our dense captioning head with GLIP-T or
DetCLIP-T. The GLIP-T is implemented with parallel text
encoding without external knowledge following the setting
as ablations in [42] on our code base. All the results are
pre-trained on Objects365 and VG. The results show that
our dense captioning head is able to boost the generaliza-
tion and model-agnostic.
Effect of dense captioning data. Table 1 shows the effi-
ciency of incorporating dense captioning data. Specifically,
only 0.07M data added, the DetCLIP-T(C) gains +2.7%
overall AP and +1.5% APr on LVIS compared to DetCLIP-

T(A). The performance of DetCLP-T(A) on rare categories
also outperforms DetCLIP-T(C) train on Objects365 and
GOLDG, while the data size is 1.43M vs. 0.73M.

4.3.2 Ablations for dense captioning

We investigate the impact of training policy and data from
different sources on the dense captioning task. As shown
in row1 in Table 5, our CapDet still achieves a significant
performance which is directly trained on VG outperforms
the previous task (i.e., TDC [41] in Table 2). Row2 is our
CapDet and is pre-trained on Objects365 and VG, while
only the bounding box in the Objects365 is regressed, and
then transformed on a dense captioning task. Since the type
of bounding boxes in dense captioning is different from the
detection data, the result of the direct transforming to dense
captioning is worse. However, we’ve proved that our model
still keeps the dense captioning capacity on the salient ob-
jects in Figure 4. The results in row3 and row4 indicate that
pre-training on the detection data Objects365 is also bene-
ficial to the dense captioning task.

5. Limitations
These are a few issues that we need to improve in the fu-

ture: (1) Although our unification training paradigm works
well on open-vocabulary object detection and dense cap-
tioning task, the training of dense captioning generation
costs lots of time. (2) In addition, existing dense caption-
ing data is high-cost to collect. We will research how to
collect large-scale dense captioning data by auto annotation
and get better performance with the scaled-up data.

6. Conclusion
In this paper, we propose a novel open-world object de-

tection method named CapDet. Our CapDet is more practi-
cal in the open world and real scenes. Specifically, CapDet
introduces a unification training framework including open-
world object detection pre-training and dense captioning.
The unification enables our CapDet to localize and recog-
nize concepts in an arbitrary given category list or directly
generate textual captions for predicted new concept objects.
Experiments show that the design of unification is both ben-
eficial to open-world object detection tasks and dense cap-
tioning tasks. In the future, our CapDet can be easily in-
jected into any open world and real scenes tasks. The uni-
fication framework can also be integrated into any other
OWD/OVD methods to generate semantic-rich concepts for
unknown/novel objects.
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Appendix for CapDet: Unifying Dense Captioning and Open-World Detection Pretraining

Appendix A. Detailed Experimental Settings
The detailed architecture parameters for different modules of CapDet are shown in Table 6. For the learning rate scheduler,

we assign a base learning rate and then linearly warm it up to the peak learning rate according to the effective total batch size
by a square root strategy, lrpeak = lrbase ×

√
batchsize/16, e.g., we set image encoder base learning rate to 1× 10−4 and it

automatically scales to 1.4× 10−4. The training hyperparameters used for CapDet are shown in Table 7.

Image Encoder Value

backbone swin-t
neck fpn
input resolution 1333×800

Text Encoder Value

width 512
heads 8
layers 12

Cross-Modal Decoder Value

width 512
heads 12
layers 12

Table 6. Detailed architecture parameters for different module.

Hyperparameter Value(%)

Image encoder lr 1.4× 10−4

Text encoder lr 1.4× 10−5

Crossmodal decoder lr 1.4× 10−5

Learning policy CosineAnnealing
warmup ratio 0.0001
warmup iters 1000
batchsize 32
weight decay 0.05
wc 1
wd 1

Table 7. The training hyperparameters used for CapDet.

Appendix B. Fine-tuning Results on LVIS
We provide the fine-tuning results on LVIS in Table 8 below. We observe that CapDet outperforms the baseline DetCLIP

with 1.2% AP on average and 6.5% AP on rare classes. Besides, though pre-trained with fewer data and tasks, CapDet shows
a competitive performance compared with the GLIPv2.

MODEL BACKBONE PRE-TRAIN DATA IMAGES NUMBER
LVIS

AP APr / APc / APf

DETCLIP-T(C)* [45] SWIN-T O365, VG 0.73M 45.6 33.6 / 45.8 / 47.5
GLIPV2-T [28] SWIN-T+DH+F O365, GOLDG, CAP4M 5.43M 50.6 - / - / -
CAPDET (OURS) SWIN-T O365, VG 0.73M 47.2 40.1 / 46.9 / 48.7

Table 8. Fine-tuning performance on LVIS [15] MiniVal5k datasets. APr/APc/APf indicate the AP values for rare, common, and frequent
categories. ‘DH’ and ‘F’ in GLIP [28] baselines stand for the dynamic head [4] and cross-modal fusion.

Appendix C. Open-World Detection Results on LVIS Full Validation Set
Table 9 reports our zero-shot object detection performance on LVIS [15] full validation set. Following [28, 45], we take

the class names with additional manually designed prompts as input of text encoder. Comparing the 5th row and 6th row, our
CapDet still outperforms DetCLIP-T(C) on the same data scale and backbone with an extra simple caption head. The zero-
shot performance surpasses the previous methods with the same backbone by a large margin on rare classes, e.g., CapDet
trained on fewer data outperforms GLIP-T [28] by 10.8% on APr.

Appendix D. Analysis of the Improvements on OVD
We attribute the improvements on OVD to the reason that the incorporation of captioning head brings more generalizability

for the region features, which in turn helps the learning of OVD task. Specifically, the dense captioning task is essentially
a sequential classification task with a large enough class space (i.e., word tokens), while alignment task is a single-step



MODEL BACKBONE PRE-TRAIN DATA IMAGES NUMBER
LVIS VAL FULL

AP APr / APc / APf

GLIP-T(A) [28] SWIN-T+DH+F O365 0.66M 12.3 6.00 / 8.00 / 19.4
GLIP-T [28] SWIN-T+DH+F O365,GOLDG,CAP4M 5.43M 17.2 10.1 / 12.5 / 25.2

DETCLIP-T(A) [45] SWIN-T O365 0.66M 22.1 18.4 / 20.1 / 26.0
DETCLIP-T(C) [45] SWIN-T O365, VG 0.73M 23.5 18.4 / 21.6 / 27.9

CAPDET (OURS) SWIN-T O365, VG 0.73M 26.1 20.9 / 24.4 / 30.2

Table 9. Zero-shot transfer performance on LVIS [15] full validation dataset. APr/APc/APf indicates the AP values for rare, common, and
frequent categories. ‘DH’ and ‘F’ in GLIP [28] baselines stand for the dynamic head [4] and cross-modal fusion.

classification task with a limited class space. Therefore, training with dense captioning tasks will bring the region feature
into a more proper location in feature space rather than simply pulling them together via only detection task. As shown
in Table 10, we further conduct the experiments to demonstrate the effectiveness of pre-training under captioning. By
comparing the row 2 and 5, we observe that even with only dense captioning data (VG data), pre-training with the dense
captioning paradigm also brings a significant improvement.

MODEL PRE-TRAIN DATA
LVIS

AP APr / APc / APf

DETCLIP-T [45]
O365 28.8 26.0 / 28.0 / 30.0
VG 10.3 8.6 / 10.1 / 10.8

O365, VG 31.5 27.5 / 30.6 / 33.0

CAPDET
O365 28.5 25.2 / 27.5 / 29.9
VG 11.4 10.2 / 11.1 / 11.8

O365, VG 33.8 29.6 / 32.8 / 35.5

Table 10. Zero-shot performance on LVIS [15] MiniVal5k datasets. APr / APc / APf indicate the AP values for rare, common, and frequent
categories, respectively. “DH” and “F” in GLIP [28] baselines stand for the dynamic head [4] and cross-modal fusion, respectively.

Appendix E. ‘Real’ Open-world Object Detection Deployment Strategy
In this paper, the detection and dense captioning task are illustrated separately for better understanding and comparison

with other methods, since no benchmark has considered combining these two tasks. For the practical deployment, we
propose a simple two-stage ensemble way to stay true to the motivation. Specifically, in the first stage, we execute detection
on images among the pre-defined categories list and treat the proposals with maximum alignment scores among all classes
less than a threshold as ‘unknown’ objects. Then in the second stage, we generate the captions for the ‘unknown’ objects. To
demonstrate the effectiveness of the proposed strategies, We conduct detection on the images with 80 categories of COCO
and regenerate captions for the ‘unknown’ objects. As shown in the Figure 5 , our proposed strategy expands the semantic
space of the limited categories list and shows reasonable results.

Appendix F. More Ablation Studies
Ablations on Pre-trained Language Model Table 11 reports the effect of different tokenizers and pre-trained language
models loaded for text encoder. We ablate two kinds of pre-trained language models and corresponding tokenizers for our text
encoder. For dense captioning head, we construct the same decoder as BLIP [26] decoder and keep the tokenizer the same as
the text encoder. The results indicate the FILIP [46] encoder with byte pair encoding performs a better generalization, since
it is pre-trained on a larger scale of data, i.e., 300M in FILIP [46] vs. 128M in BLIP [26].

Ablations on the Weighting Factor of Dense Captioning Loss We study the effect of weights of detection loss and dense
captioning loss during pre-training. We set the weighting factor of detection loss wd to 1.0. Table 12 provides the ablations
of the weighting factor of dense captioning loss wc. We choose wc = 1 for CapDet, since the result of overall AP is the best.



Figure 5. Deployment results.

Pre-trained Model Tokenizer Vocab Size DC Head LVIS
AP APr / APc / APf

BLIP [26] WordPiece 30524 ✗ 30.4 26.7 / 29.4 / 32.0
✓ 32.4 27.4 / 31.8 / 33.9

FILIP [46] BPE 49408 ✗ 31.5 27.5 / 30.6 / 33.0
✓ 33.8 29.6 / 32.8 / 35.5

Table 11. Effect of different tokenizers and language models. ‘DC Head’ and ‘BPE’ stand for the integration of Dense Captioning Head
and Byte Pair Encoding.

wc
LVIS

AP APr / APc / APf

0.5 33.6 31.0 / 32.8 / 34.9
1.0 33.8 29.6 / 32.8 / 35.5
1.5 33.5 32.0 / 32.1 / 35.0

Table 12. Effect of weighting factor of dense captioning loss.

Figure 6. Qualitative visualizations on LVIS.

Appendix G. More Qualitative Results

Open-World Detection Results Figure 6 illustrates more detection results on LVIS [15] dataset from our CapDet. We
highlight the detected rare classes’s text in red.



Figure 7. Qualitative visualizations on VG.

Dense Captioning Results Figure 7 shows more captioning results on VisualGenome [24] dataset. Our model CapDet
locates not only “object” such as “bicycle” but also “region” such as “a shadow on the ground”. We also explored the zero-
shot generalization ability of CapDet. We directly use our model to do the zero-shot dense captioning task without finetuning
on serveral datasets, which include SBU [33], LVIS [15], Open Image [25], BDD100K [48], Pascal VOC [10] and COCO [3].
As shown in Figure 8, CapDet can accurately locate objects and generate corresponding region-grounded captions.



BDD100k Pascal VOC

SBU LVIS Open Image

COCO

Figure 8. Qualitative visualizations on several datasets.
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