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Abstract— The generalization error bound of the support
vector machine (SVM) depends on the ratio of the radius and
margin. However, conventional SVM only considers the maxi-
mization of the margin but ignores the minimization of the radius,
which restricts its performance when applied to joint learning of
feature transformation and the SVM classifier. Although several
approaches have been proposed to integrate the radius and
margin information, most of them either require the form of
the transformation matrix to be diagonal, or are nonconvex and
computationally expensive. In this paper, we suggest a novel
approximation for the radius of the minimum enclosing ball in
feature space, and then propose a convex radius-margin-based
SVM model for joint learning of feature transformation and
the SVM classifier, i.e., F-SVM. A generalized block coordinate
descent method is adopted to solve the F-SVM model, where the
feature transformation is updated via the gradient descent and
the classifier is updated by employing the existing SVM solver. By
incorporating with kernel principal component analysis, F-SVM
is further extended for joint learning of nonlinear transformation
and the classifier. F-SVM can also be incorporated with deep con-
volutional networks to improve image classification performance.
Experiments on the UCI, LFW, MNIST, CIFAR-10, CIFAR-100,
and Caltech101 data sets demonstrate the effectiveness of F-SVM.

Index Terms— Convex relaxation, max margin, radius-margin
error bound, support vector machine (SVM).

I. INTRODUCTION

THE support vector machine (SVM) and its extensions
are one class of the most successful machine learn-

ing methods [1], and have been widely adopted in various
application fields [2], [3]. Actually, SVM aims to seek the
optimal hyperplane with the maximum margin principle, but
the generalization error of SVM actually is a function of
the ratio of the radius and margin, i.e., radius-margin error
bound [4]. When feature mapping is given, the radius is fixed
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and can be ignored, and thus SVM can safely minimize the
generalization error by maximizing the margin. However, for
joint learning of feature transformation and the classifier, the
radius information is valuable and cannot be ignored.

Given a sample x, the feature transformation is defined as
a linear projection Ax, where A is the transformation matrix.
Denote by (u, b) a linear classifier. The radius-margin error
bound can then be utilized to guide the joint learning of
feature transformation A and classifier (u, b), resulting in
the classifier u�Ax + b. When the matrix A is constrained
to be diagonal, it becomes a joint feature weighting and
classifier learning problem [2]. Since the radius-margin error
bound is nonconvex, relaxation and approximation of the
radius are generally adopted in the existing models [5], [6].
Several approaches have been proposed from the perspec-
tive of the radius-margin error [2], [5]–[7], but most suffer
from the limitations of computational burden and simplified
forms of transformation. Relative margin machine (RMM) [5]
only considers the spread of the data along the direction
perpendicular to the classification hyperplane. Radius-margin-
based SVMs, e.g., margin-radius SVM (MR-SVM) [2], metric
learning-based radius-margin SVM (R-SVM+), and radius-
margin SVM for feature selection (RSVM+μ ) [7], are only
applicable to feature weighting and selection.

Another strategy is to incorporate metric learning with
SVM. Metric learning can be adopted to learn a better linear
transformation matrix [6], [8], [9]. One simple approach to
combine metric learning and SVM is to directly deploy the
transformation obtained using metric learning into SVM. This
approach, however, usually cannot lead to a satisfying perfor-
mance [10]. Therefore, other approaches have been proposed
to integrate metric learning into SVM, e.g., support vector
metric learning (SVML) [10] and metric learning with SVM
(MSVM) [6]. But SVML [10] is designed for SVM with
Gaussian radial basis function kernel (RBF-SVM) and ignores
the radius information, while MSVM [6] is nonconvex.

In this paper, we propose a novel radius-margin-based SVM
model for joint learning of feature transformation and the
SVM classifier, i.e., F-SVM. Compared with existing radius-
margin-based SVM methods, we derive novel lower and upper
bounds for the relaxation of the radius. Unlike MR-SVM [2],
R-SVM+ and R-SVM+μ [7] which are suggested for joint fea-
ture weighting and SVM learning, F-SVM can simultaneously
learn feature transformation M = A�A and the classifier
(w, b). Compared with the existing metric learning for SVM
methods, our F-SVM model considers both the radius and the
margin information. Compared with MSVM [6] which aims
to learn A and (u, b), and is nonconvex, our F-SVM jointly

2162-237X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3330-783X
https://orcid.org/0000-0003-2248-3755


5186 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

learns M and (w, b). And the united inequality constraint is
further introduced to improve the robustness and to reduce the
computational budget. Benefitted from the introduction of M
and united inequality constraint, we present a convex model
for joint feature transformation and classifier learning. A gen-
eralized coordinate descent (GBCD) algorithm is proposed to
solve our F-SVM model, which iterates alternately by updating
the feature transformation and classifier. Note that kernel SVM
is equivalent to performing linear SVM in the kernel principal
component analysis (PCA) space. We further extend linear
F-SVM in the kernel PCA space for joint learning of the
nonlinear transformation and classifier. Experiments have been
conducted on the 20 UCI data sets and the LFW database.
The results show that F-SVM outperforms SVM and the exist-
ing radius-margin-based SVMs. Furthermore, we incorporate
F-SVM with deep convolutional networks (CNNs) for image
classification, and achieve state-of-the-art performance on the
MNIST, CIFAR-10, CIFAR-100 and Caltech101 data sets.
To sum up, the main contributions of this paper are four fold.

1) Novel lower and upper bounds are derived for the radius
of the minimum enclosing ball (MEB). The bounds not
only offer a novel approximation of the radius, but also
lay a solid theoretical foundation to our F-SVM model.

2) A novel convex formulation of a radius-margin-based
SVM model, i.e., F-SVM, is proposed. In F-SVM, all
the constraints on distance are aggregated into one united
inequality constraint. Instead of learning A, our F-SVM
jointly learns M = A�A and (w, b), and thus can be
formulated into a convex program. To the best of our
knowledge, F-SVM is the first convex model for joint
learning of feature transformation and SVM classifier.

3) Benefitted from the united inequality constraint,
we develop a semiwhitened PCA method for initializ-
ing M. A generalized block coordinate descent (GBCD)
algorithm is suggested to solve our F-SVM model.
GBCD can converge to the global optimum, and is
much more efficient than RMM [5], R-SVM+, and
R-SVM+μ [7] in training.

4) By revealing the equivalence of kernel SVM and linear
SVM in kernel PCA space, we further suggest a kernel
F-SVM model by conducting linear F-SVM in the kernel
PCA space.

The remainder of this paper is organized as follows.
Section II reviews the related work on radius-margin-based
SVM methods. Section III describes the model and algorithm
of F-SVM. Section IV extends F-SVM to the kernelized
version for nonlinear classification. Section V provides the
experimental results on the UCI, LFW, MNIST, CIFAR-10,
CIFAR-100, and Caltech101 data sets. Finally, the conclusions
are drawn in Section VI.

II. RELATED WORK

The radius-margin error bound not only provides a
theoretical explanation of the generalization performance
of SVM [1], but also has been extensively adopted for
improving kernel classification methods, e.g., model selec-
tion [11] and multiple kernel learning [12], [13]. Denote by
S = {(x1, y1), . . . , (xn, yn)} a training set, where xi ∈ Rd

stands for the i th training sample and yi ∈ {−1,+1} stands

for the corresponding class label of xi . Given a mapping
� : x �→ H to map the sample x to some feature space H,
the radius R of the MEB [12] is defined as

min
R,x0

R2, s.t. ��(xi )−�(x0)�22 ≤ R2 ∀i. (1)

Suppose that the training set is linearly separable in the feature
space with the optimal hyperplane defined by u��(x)+b = 0.
Vapnik [1] shows that the expectation of the misclassification
probability depends not only on the margin but also on the
radius, and is bounded by the function of R2�u�22.

The SVM is well known as a max-margin model, which
only considers the margin 1/�u�22. When the feature space
is fixed, the radius is a constant and can thus be safely
ignored. But in many learning tasks, the model parame-
ters [11], combination of basis kernels [12], feature reweight-
ing, or transformation should usually be learned or tuned based
on the training data by incorporating both margin and radius
information [7], [13], [14].

This paper aims to jointly learn SVM together with the
feature transformation by minimizing the radius-margin ratio,
i.e., R2�u�22. Thus, a more detailed review is given on
this topic. Except for [6], most existing approaches [2], [7]
require the transformation matrix to be diagonal, and thus
are only applicable to feature reweighting and selection.
Direct use of the radius-margin ratio in SVM results in a
nonconvex optimization problem, which makes the learning
algorithm computationally expensive and unstable. In feature
reweighting and selection, the feature transformation matrix
should be diagonal, i.e., D√μ = Diag{√μ} with

√
μ =

[√μ1, . . . ,
√

μk, . . . ,
√

μd ]�, where
√

μk is a scaling factor
for the kth feature.

Do et al. [2] suggest that the radius is bounded with
maxk μk R2

k ≤ R2
μ ≤

∑
k μk R2

k , where Rk is the radius
of dimension k. By approximating R2

μ with its upper bound
∑

k μk R2
k , MR-SVM [2] solves the following convex relax-

ation problem:
min

w,b,ξ,μ

1

2

∑

k

w2
k

μk
+ C

∑
k μk R2

k

∑

i

ξ2
i

s.t. yi (w�xi + b) ≥ 1− ξi ∀i∑

k

μk = 1, μk ≥ 0 ∀k (2)

where w = [w1, w2, . . . , wd ]� is the normal vector to the
classification hyperplane, and b/�w�2 is the offset of the
hyperplane from the origin along w. ξi denotes the i th slack
variable, and C stands for the tradeoff parameter. RO is
denoted by the half value of the maximum pairwise distance.
Do and Kalousis [7] introduce a tighter bound of the radius
RO ≤ Rμ ≤ ((1+√3)/2)RO , and propose another convex
model, i.e., R-SVM+μ

min
w,b,ξ,μ,r

1

2

∑

k

w2
k

μk
+ λr + C

∑

i

ξi

s.t. yi(w�xi + b) ≥ 1− ξi ∀i
ξi ≥ 0, i = 1, 2, . . . , n∑

k

μk = 1, μk ≥ 0 ∀k
1

2
(xi − x j )

�Dμ(xi − x j ) ≤ r ∀i, j (3)
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where Dμ = Diag{μ}. Furthermore, R-SVM+ [7] is developed
by controlling both the radius and margin with w.

Zhu et al. [6] propose a metric learning with the SVM
(MSVM) method for joint learning of the linear transforma-
tion and SVM classifier. Given the transformation matrix A,
an alternative R̄ = maxi�Axi − Ax̄�22 of the radius R
is adopted, where x̄ is the mean of the training samples.
Although Zhu et al. [6] claim that R = R̄, as demonstrated
in Theorem 1 of this paper, R̄ is an upper bound of R. The
MSVM model [6] is formulated as

min
u,b,ξ ,A

1

2
�u�22 + C

∑

i

ξ2
i

s.t. yi (u�Axi + b) ≥ 1− ξi ∀i
�Axi − Ax̄�2 ≤ 1 ∀i. (4)

MSVM is nonconvex and can be solved using gradient
projection.

In this paper, we propose a novel relaxed convex model of
the radius-margin-based SVM, i.e., F-SVM, for joint learning
of the feature transformation and SVM classifier. Compared
with existing radius-margin-based SVM methods, F-SVM has
some distinguishing advantages. MSVM [6] is nonconvex,
while our F-SVM model is convex and our GBCD algo-
rithm converges to the global optimum. Unlike RMM [5],
the transformation in F-SVM is learned to minimize the
radius of the enclosing ball of all samples rather than to only
shrink the sample spanned along the direction perpendicular
to the hyperplane. Moreover, F-SVM is also different from
MR-SVM [2], R-SVM+, and R-SVM+μ [7] from three aspects.

1) Instead of feature weighting, F-SVM can simultaneously
learn the feature transformation and classifier.

2) F-SVM adopts a new approximation for the radius of
MEB in feature space.

3) In F-SVM, individual inequality constraints are com-
bined into one holistic inequality constraint to improve
the robustness and training efficiency.

All these make F-SVM very promising for joint learning of
the feature transformation and SVM classifier, and the exper-
imental results further validate the effectiveness of F-SVM.

III. RADIUS-MARGIN-BASED SUPPORT

VECTOR MACHINE

A. Problem Formulation

Given the training set S, by introducing the slack variables
ξi (i = 1, 2, . . . , n), the SVM can be formulated as

min
u,b,ξ

1

2
�u�22 + C

∑

i

ξi

s.t. yi (u�xi + b) ≥ 1− ξi ∀i
ξi ≥ 0, i = 1, 2, . . . , n (5)

where (u, b) are the parameters used to describe the learned
hyperplane u�x + b = 0. The objective function in (5)
aims to maximize the margin γ = 1/�u�2 while minimizing
the empirical risk

∑n
i=1 ξi . For joint learning, we introduce

a linear transformation matrix A and integrate the radius

information, resulting in the following radius-margin-based
SVM model:

min
u,b,ξ,A,R

1

2
�u�22 R2 + C

∑

i

ξi

s.t. yi (u�Axi + b) ≥ 1− ξi ∀i
ξi ≥ 0, i = 1, 2, . . . , n (6)

where the radius R is defined as

min
R,x0

R2, s.t. �Axi − Ax0�22 ≤ R2, i = 1, 2, . . . , n. (7)

Note that R2 depends on matrix A and the problem in (6) is
nonconvex [7]. We introduce x̄ to denote the mean vector of
the training samples, i.e., x̄ = (1/n)

∑n
i=1 xi , and R̄ to denote

the largest Euclidean distance between the training samples
and the mean vector in the transformation space, i.e., R̄ =
maxi �Axi − Ax̄�22. Then, it can be proved that the radius R
is bounded by R̄.

Theorem 1: The radius R is bounded by R̄ by

1

2
R ≤ R ≤ R. (8)

Please refer to Appendix A the proof of Theorem 1.
e = R̄ − R is denoted as the error of approximation. From
Theorem 1, we have 0 ≤ e ≤ R, and thus R̄ can serve
as a reasonable approximation with theoretical guarantee.
Zhu et al. [6] claim that R = R̄. From Theorem 1, R̄
is only an approximation of R, and counter examples can
be easily found to illustrate R �= R̄. Let w = A�u and
M = A�A which is positively definite. Since the radius R
is upper bounded by R̄, we can approximate R with R̄. With
simple algebra, the radius-margin SVM model in (6) is relaxed
into the following formulation:

min
w,b,ξ,M,R̄

F(w, b, ξ , M, R̄) = 1

2
(w�M−1w)R̄2 + C

n∑

i=1

ξi

s.t. yi (w�xi + b) ≥ 1− ξi ∀i
ξi ≥ 0, i = 1, 2, . . . , n

(xi − x̄)�M(xi − x̄) ≤ R̄2. (9)

Theorem 2: The problem in (9) is equivalent to the following
problem:

min
w,b,ξ,M

L(w, b, ξ , M) =
{

1

2
(w�M−1w)+ C

n∑

i=1

ξi

}

s.t. yi (w�xi + b) ≥ 1− ξi ∀i
ξi ≥ 0, i = 1, 2, . . . , n

(xi − x̄)�M(xi − x̄) ≤ 1 ∀i
M � 0. (10)

Proof: Denote by (ŵ, b̂, ξ̂ , M̂, R̂) the optimal solution to
the problem in (9). Let M̃ = M̂/R̂2 and R̃ = 1. It is obvious
that (ŵ, b̂, ξ̂ , M̃, R̃) is also the optimal solution to the problem
in (9) because F(ŵ, b̂, ξ̂ , M̂, R̂) = F(ŵ, b̂, ξ̂ , M̃, R̃).

Next we will show that (ŵ, b̂, ξ̂ , M̃) is the optimal solution
to the problem in (10). If (ŵ, b̂, ξ̂ , M̃) is not the optimal
solution to (10), there must exist some (w∗, b∗, ξ∗, M∗) that
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Fig. 1. Intuitive explanation on the goals of the three main steps of our algorithm. (a) By assuming �w�2 = 1, a semiwhitened PCA method is adopted for
the initialization of M, which is more reasonable than whitened PCA by considering both the radius and the margin information. (b) Subproblem on (w, b)
can then be solved by the off-the-shelf SVM solvers to maximize the margin. (c) M is updated by balancing the following two terms: 1) shrinking M based
on the weighted covariance matrix S and 2) expanding M along the direction of w. As a result, the updated M not only can decrease the radius of MEB, but
also may even increase the margin.

satisfies all inequality constraints and L(w∗, b∗, ξ∗, M∗) <
L(ŵ, b̂, ξ̂ , M̃). Then we can define R̃ = 1 and have
F(w∗, b∗, ξ∗, M∗, R̃) < F(ŵ, b̂, ξ̂ , M̃, R̃), which is contra-
dictory with the assumption that (ŵ, b̂, ξ̂ , M̃, R̃) is the optimal
solution to (9). Thus, we can solve the problem in (10) with
the optimal solution (ŵ, b̂, ξ̂ , M̃), and then obtain the optimal
solution (ŵ, b̂, ξ̂ , M̃, R̃) to (9).

Without loss of generality, we assume R̃ = 1 and seek
the corresponding optimal w and M by solving (10). More-
over, to make the model robust against outliers and noisy
samples, we combine the individual inequality constraints
(xi − x̄)�M(xi − x̄) ≤ 1, i = 1, 2, . . . , n into one inte-
grated inequality constraint [13]. By emphasizing more on
the samples far from the mean x̄, the integrated inequality
constraint is defined as

∑n
i=1 ωi (xi − x̄)�M(xi − x̄) ≤ ε with

ωi = ((exp(�xi − x̄�22))/(
∑n

j=1 exp(�x j − x̄�22))), resulting in
the following radius-margin-based SVM model:

min
w,b,ξ,M

1

2
(w�M−1w)+ C

n∑

i=1

ξi

s.t. yi (w�xi + b) ≥ 1− ξi ∀i
ξi ≥ 0, i = 1, 2, . . . , n

n∑

i=1

ωi (xi − x̄)�M(xi − x̄) ≤ ε

M � 0. (11)

The model above is a constrained optimization problem. The
constraints M � 0, ξi ≥ 0 and yi (w�xi + b) ≥ 1 − ξi

(i = 1, 2, . . . , n) define a convex set. Let the weighted covari-
ance matrix S = ∑n

i=1 ωi (xi − x̄)(xi − x̄)�. The constraint∑n
i=1 ωi (xi − x̄)�M(xi − x̄) ≤ ε can be equivalently written

as tr(MS) ≤ ε and also defines a convex set. The objective
function of (11) consists of two terms, i.e.,

∑n
i=1 ξi and

w�M−1w. It is obvious that
∑n

i=1 ξi is linear to ξ . According
to Appendix C, w�M−1w is convex to w and M � 0. To
sum up, all the constraints define a convex set, and objective
function is convex. Thus, the model in (11) is convex and can
be equivalently formulated as

min
w,b,ξ ,M

1

2
(w�M−1w)+ C

n∑

i=1

ξi + ρtr(MS)

s.t. yi (w�xi + b) ≥ 1− ξi ∀i
ξi ≥ 0, i = 1, 2, . . . , n

M � 0 (12)

where ρ is the regularization parameter determined by ε.
Based on the method of Lagrange multipliers [15], for every
ε ≥ 0, there is a ρ such that the Karush–Kuhn–Tucker
conditions are satisfied and the problems in (11) and (12) have
the same solutions. Similarly, for every ρ ≥ 0, there is also a ε.
In (11), the parameter ε should be manually set or determined
using cross validation. In this paper, instead of setting ε and
finding the optimal ρ� (refer to Lemma B.1), we empirically
set ρ for (12) that corresponds to the best average classification
accuracy in our experiments. Please refer to Appendix B for
the analysis of the equivalent of the two formulations. In the
following, we show that our F-SVM model is convex.

Theorem 3: The F-SVM model in (12) is a convex opti-
mization problem.

The proof can be found in Appendix C.

B. Optimization Algorithm

In this section, we propose an efficient GBCD algorithm to
solve the F-SVM model. Fig. 1 intuitively explains the goals
of its main steps (i.e., the initialization of M, the subproblem
on (w, b), and the subproblem on M). Fig. 2 illustrates
the subproblem and solution involved in each step. In the
following, we explain each step in detail.

1) Initialization of M: Proper initialization is helpful in
improving computational efficiency. To this end, by further
relaxing the F-SVM model in (12), we propose a semiwhitened
PCA-based initialization method of M.

Note that w�M−1w is upper bounded by [16]

w�M−1w = tr(ww�M−1)

≤ �w�22�M−1�2
≤ �w�22�M−1�∗ (13)

where � · �2 and � · �∗ denote the 	2-norm and the nuclear
norm of a matrix, respectively. The nuclear norm of a matrix,
also known as the trace norm, is defined as the summation
of all its singular values [17]. Based on (12) and (13), by
setting B = M−1, the subproblem of M can be rewritten as
the problem of B

min
B

L(B) = �B�∗ + τ �tr(B−1S)

s.t. B � 0 (14)

where τ � = ρ/�w�2. The eigenvalue decomposition of S is
S = U�U�, where � = Diag{λ1, λ2, . . . , λd } (λ1 ≥ λ2 ≥
· · · ≥ λd ≥ 0), and λi and the i th column of U denote the
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Fig. 2. Illustration of the subproblems with their solutions in our optimization algorithms. In the initialization stage, we initialize M by solving a nuclear
norm optimization problem. In the GBCD algorithm, we solve the subproblem on (w, b) by using the off-the-shelf SVM solver, and solve the subproblem on
M by using the projected gradient descent (PGD) algorithm. Our GBCD algorithm alternates between updating (w, b) and M until convergence.

ith eigenvalue and eigenvector, respectively. With U and �,
we define B̂ as

B̂ = U�U�, � = Diag{(τ �λ1)
1/2, . . . , (τ �λd )1/2}. (15)

Theorem 4: Given a symmetric positively defined (SPD)
matrix S and τ � > 0, B̂ defined in (15) is the optimal solution
to the problem

B̂ = arg min
B
{L(B, τ �) = �B�∗ + τ �(tr(B−1S))}. (16)

The proof can be found in Appendix D. With B̂, the initial-
ization of M in (12) is then defined as

M0 = 1√
τ �

U�U�, � = Diag{(λ1)
−1/2, . . . , (λd )−1/2}.

(17)

Note that we assume �w�2 is known for the initialization of
M. From (17), �w�2 only affects the scale factor

√
τ � to the

linear transformation. Thus, we simply let �w�2 = 1 in our
implementation.

It is interesting to point out that M0 in (17) is closely
related with PCA and whitened PCA, and can be regarded as a
semiwhitened PCA. S = U�U� is denoted as the eigenvalue
decomposition of the covariance matrix S. PCA, whitened
PCA, and our semiwhitened PCA are described as follows.

1) In standard PCA, the linear transformation matrix is
defined as A = U� = �0U�. The Euclidean distance
in the transformation space can be written as �Axi −
Ax j�2 = (xi − x j )

�U�0U�(xi − x j ).
2) In the whitened PCA, the whitening transformation

matrix is defined as A = �−(1/2)U� [18]. The Euclidean
distance in the transformation space can be written
as �Axi − Ax j�2 = (xi − x j )

�U�−1U�(xi − x j ).
Whitening is a useful preprocessing strategy and has

been widely exploited in many applications, e.g., face
recognition [19] and object detection [20].

3) Based on (17), we define A = �−(1/4)U�, and the
Euclidean distance in the transformation space can then
be written as �Axi − Ax j�2 = (xi − x j )

�M0(xi − x j ).
Note that A is defined as �0U� for standard PCA and as
�−(1/2)U� for whitened PCA, we call A = �−(1/4)U�
together with M0 = U�−(1/2)U� the semiwhitened
PCA. Compared with whitened PCA, semiwhitened
PCA seems to be a more reasonable choice by consid-
ering both the radius and margin information.

In addition, the proposed initialization method is also con-
nected with eigenvalue power normalization (EPN), where
S̃ = U�pU�(0 ≤ p ≤ 1) is adopted for the normalization
of S. EPN has been used to measure the distances between
SPD matrices [21], [22], and has achieved promising perfor-
mance in image classification [22]. Considering its connections
with PCA, whitened PCA and EPN, it is natural to expect that
our semiwhitened PCA can find more applications in various
learning tasks.

2) Subproblem of (w, b): Given M, the F-SVM model can
be formulated as

min
w,b,ξ

1

2
w�Bw + C

n∑

i=1

ξi

s.t. yi (w�xi + b) ≥ 1− ξi ∀i
ξi ≥ 0, i = 1, 2, . . . , n (18)

where B = M−1. The eigenvalue decomposition of M is
M = V�V�. By introducing M = L�L, the transformation
matrix L can be rewritten as L = �(1/2)V�. Let zi = Lxi and
v = �−(1/2)V�w. With simple algebra, the problem in (18)
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can be reformulated as

min
v,b,ξ

1

2
v�v + C

n∑

i=1

ξi

s.t. yi (v�zi + b) ≥ 1− ξi ∀i
ξi ≥ 0, i = 1, 2, . . . , n (19)

which can be solved using off-the-shelf SVM solvers. Given
the solution v, w = V�(1/2)v can then be obtained.

3) Subproblem of M: Given (w, b), the subproblem of M
can be reformulated as

min
M

f (M) = 1

2
(w�M−1w)+ ρtr(MS)

s.t. M � 0. (20)

Since the objective function in (20) is convex and differen-
tiable with respect to M � 0, the gradient-projection method is
adopted to update M. The gradient of f (M) can be obtained by

∇ f (M) = −1

2
M−1ww�M−1 + ρS. (21)

As presented in Algorithm 1, we use gradient projection

M = PS+(M − t∇ f (M)) (22)

to update M by choosing the proper stepsize t and gradually
decreasing it along with iterations, where PS+(·) projects a
matrix onto the cone of positive semidefinite matrices. Since
M should be strictly positively defined to guarantee that its
inverse matrix M−1 exists, we add γ I to matrix M, where
γ is a small positive value and is set as γ = 10−4 in our
implementation. We note that the computational complexity of
positive semi-definite (PSD) projection is O(d3). Fortunately,
the dimension d usually is small. Moreover, due to the warm
initialization method, our GBCD algorithm generally can
obtain satisfying result within only a few (e.g., 10) iterations.

Intuitively, M is updated by balancing the two terms:
1) shrinking along the directions of the eigenvectors of
the weighted covariance matrix S by its eigenvalues and
2) expanding along the direction of w. Thus, as illustrated
in Fig. 2(c), the above algorithm not only can decrease the
radius of MEB, but also may even increase the margin to
minimize the approximated radius-margin error bound. Finally,
the whole GBCD algorithm is summarized in Algorithm 1.

4) Convergence Analysis: The proposed Algorithm 1 is a
GBCD method. Xu and Yin [23] provide a unified framework
to analyze the convergence of a regularized block multiconvex
optimization problem

min
�

{

F(θ1, θ2, . . . , θ s) = f (θ1, θ2, . . . , θ s)+
s∑

i=1

ri (θ i )

}

where � = (θ1, θ2, . . . , θ s). The GBCD method mini-
mizes F by cyclically updating each θ1, θ 2, . . . , θ s while
fixing the remaining blocks. In GBCD, each block can be
updated by solving either the original subproblem, proximal
subproblem, or prox-linear subproblem. Xu and Yin [23]
analyze the convergence of the algorithm in two steps. First,
under the assumptions of continuity and block convexity,
GBCD can globally converge to a single Nash point if the

Algorithm 1 The GBCD algorithm for training F-SVM
Input: Training set S = {(x1, y1) , ..., (xn, yn)}.
Output: Optimal positive definite matrix M∗ and (w∗, b∗).
1: l = 1, t1 = 1, β = 0.9
2: Initialize M1:
3: S =∑n

i=1 ωi (xi − x̄)(xi − x̄)�

4: ωi = exp(�xi−x̄�22)
∑n

j=1 exp(�x j−x̄�22)

5: S = U�U�,� = Diag{λ1, λ2, · · · , λd }
6: M1 =

√
τ �U
U�,
 = Diag{λ1

−1
2 , λ2

−1
2 ,· · ·, λd

−1
2 }

7: repeat
8: // Lines 9-11: updating (w, b).
9: Eigenvalue decomposition on Ml : Ml = V�V�

10: Perform linear transformation on xi : zi←�1/2V�xi

11: Update the SVM classifier (wl , bl) based on Z
12: // Lines 13-15: updating M.
13: Compute the gradient of Ml :
14: ∇ f (Ml) = − 1

2 M−1
l wlw�l M−1

l + ρS
15: Update M: Ml+1 = PS+ (Ml − tl∇ f (Ml))
16: Update the stepsize t: tl+1 ← β ∗ tl
17: l ← l + 1
18: until M and (w, b) converge

bounded sequence and the isolated Nash points hold. Second,
the global convergence can be further established by applying
the Kurdyka−Lojasiewicz inequality [24].

Our method in Algorithm 1 is a GBCD method and can
converge to a global optimal solution. Let θ1 = (w, b, ξ ) and
θ2 =M. We define

f (θ1, θ2) = 1

2
(w�M−1w)+ C

n∑

i=1

ξi

s.t. yi (w�xi + b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . , n

r1(θ1) = 0

r2(θ2) =
{

0, if M � 0

+∞, else.

Then our F-SVM can be rewritten as the the regularized block
multiconvex optimization problem

min
θ1,θ2

{

F(θ1, θ 2) = f (θ1, θ2)+
2∑

i=1

ri (θ i )

}

.

Given M = B−1, we update θ1 by solving the subproblem

{w, b, ξ } = arg min
w,b,ξ

1

2
(w�Bw)+ C

n∑

i=1

ξi

s.t. yi (w�xi + b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . , n.

Given {w, b, ξ }, we update θ2 by solving the prox-linear
subproblem

Ml = arg min
M
�∇ f (Ml−1), M −Ml−1�

+ 1

2t
�M−Ml−1�2 + r2(M)
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and the closed form solution of this subproblem is exactly the
updating rule adopted in (22). Note that f (θ1, θ2) is locally
strongly convex and thus satisfies the Kurdyka−Lojasiewicz
inequality [24]. The proposed algorithm can converge to a
globally optimum. Our experiments also empirically validate
the convergence of our algorithm.

C. Discussion
Compared with the other radius-margin-based SVMs [2],

[5]–[7], the proposed F-SVM method has several important
advantages. RMM [5] is suggested to maximize the margin
while restricting the spread of the data along the direction
perpendicular to the separating hyperplane. Actually, the gen-
eralization error is bounded by the radius and margin ratio,
and the radius is determined by the spread along all possible
directions rather than only the direction perpendicular to
the separating hyperplane, making F-SVM theoretically more
promising. Different with RMM, our F-SVM is proposed to
minimize the convex relaxation of the radius-margin ratio, and
is expected to achieve a better classification performance.

MR-SVM [2], R-SVM+, and R-SVM+μ [7] aim to learn
the diagonal feature transformation Dμ = Diag(μ) with
μk ≥ 0, while F-SVM is developed for joint learning of the
feature transformation and SVM classifier. Both R-SVM+ and
R-SVM+μ need to solve a quadratically constrained quadratic
programming optimization problem, which is computationally
more expensive than the alternating minimization method
used in our F-SVM. Moreover, R-SVM+ and R-SVM+μ adopt
another approximation RO of the radius. In F-SVM, a new
approximation R̄ of the radius is proposed, which is tighter
than that used in MR-SVM [2]. Moreover, the individual
inequality constraints on R̄ are combined to improve the
robustness against outliers.

Besides, MSVM [6] has also been suggested for joint
learning of the linear transformation and SVM classifier.
However, the source code of MSVM [6] is unavailable, and our
F-SVM is distinctly different with MSVM. First, MSVM is
built upon an evidently wrong claim on the radius of MEB.
Instead, we derive novel lower and upper bounds for the radius
of MEB, which lay a solid theoretical foundation to F-SVM.

Second, in MSVM the inequality constraints on distance
are treated individually, i.e., �Axi − Ax̄�2 ≤ 1,∀i . In F-SVM,
all the constraints are aggregated into one united inequality,
i.e.,

∑n
i=1 ωi (xi − x̄)�M(xi − x̄) ≤ ε. The united inequality

constraint can be used to improve the robustness and to reduce
computational budget of F-SVM. Moreover, the introduction
of united inequality constraint also makes it feasible to initial-
ize M with semiwhitened PCA, which can greatly improve the
training efficiency. To the best of our knowledge, our F-SVM
is the first work to introduce the united inequality constraint
in radius-margin-based SVMs.

Third, compared with MSVM which aims to learn A and
(w, b), our F-SVM jointly learns M = A�A and (w, b).
Benefitted from the introduction of M, our F-SVM can be
formulated into a convex optimization model and can attain
globally optimal solution while MSVM is nonconvex. To the
best of our knowledge, F-SVM is the first convex model for
joint learning of feature transformation and SVM classifier.

Fourth, benefitted from the united inequality constraint and
the convex formulation of F-SVM, we develop a semiwhitened
PCA method for initialization and a GBCD algorithm to solve
our F-SVM model. Our algorithm is guaranteed to converge
to the global optimum, while the gradient-projection algorithm
used in MSVM can only reach the locally optimal solution.
Moreover, our F-SVM can be extended to its kernelized
version for nonlinear classification.

IV. KERNELIZATION OF F-SVM

With the incorporation of kernel PCA, linear F-SVM can be
extended to a kernelized version for nonlinear classification.
First, we show that kernel SVM is equivalent to performing
linear SVM in kernel PCA space. Then, kernel F-SVM is
introduced by conducting linear F-SVM in the kernel PCA
space.

Suppose the kernel function is K (xi , x j ) = �(xi )
��(x j ),

where �(x) defines an implicit mapping of feature space. For
the training set S, we use W = [w1, w2, . . . , wD0] to denote
all the PCA eigenvectors corresponding to positive eigenval-
ues. Let W be a set of basis vectors in the complementary
space of W. Assuming the training set is centered, we have
W
�
�(xi ) = 0, and can get

K (xi , x j ) = �(xi )
�WW��(x j )+�(xi )

�W W
�
�(x j )

= �(xi )
�WW��(x j ). (23)

Let fi = W��(xi ). The dual problem of SVM in the kernel
PCA space can be formulated as

max
α

Q(α) =
∑

i

αi − 1

2

∑

i, j

αiα j yi y j �fi , f j �

s.t.
∑

i

αi yi = 0

0 ≤ αi ≤ C ∀i (24)

where �fi , f j � = K (xi , x j ). Therefore, kernel SVM is equiv-
alent to performing linear SVM in the kernel PCA space.
To extend F-SVM to its kernelized version, we first project
each training sample xi to the kernel PCA space fi =
W��(xi ), and then solve the following F-SVM model:

min
w,b,ξ ,M

1

2
(w�M−1w)+ C

n∑

i=1

ξi + ρtr(MS f )

s.t. yi (w�fi + b) ≥ 1− ξi ∀i
ξi ≥ 0 ∀i
M � 0 (25)

where S f = ∑n
i=1 ωi fi f�i . Algorithm 1 can be adopted

to solve the model in (25). In our implementation, instead
of using all the eigenvectors, we only employ the PCA
eigenvectors corresponding to the first D largest eigenvalues,
i.e., W = [w1, w2, . . . , wD].

V. EXPERIMENTS

Experiments are conducted on 20 UCI data sets as
described in Table I, the labeled faces in the wild (LFW), and
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TABLE I

DESCRIPTION OF THE 20 UCI DATA SETS1 USED IN THE EXPERIMENTS

four large-scale image classification data sets, i.e., MNIST,
CIFAR-10 [25], CIFAR-100 [25], and Caltech101 [26]. On
the UCI and LFW data sets, the F-SVM method is compared
with several related methods, including the standard SVM,
RMM [5], R-SVM+, and R-SVM+μ [7]. On LFW we also
compare F-SVM with several recent face verification methods,
including discriminative deep metric learning (DDML) [27],
HPEN+HD-Gabor+JB [28], and multi-directional multi-
level dual-cross patterns (MDML-DCPs) [29]. On MNIST,
CIFAR-10, CIFAR-100 and Caltech101, motivated by the
recent success of CNN, we stack the F-SVM model upon the
deep CNNs, and compare with the state-of-the-art methods
with similar network architecture.

On the UCI and LFW data sets, we adopt the average
classification accuracy (%) obtained by 10 runs of the tenfold
cross validation (CV) as the performance metric. To avoid
the use of the test set for parameter tuning, we employ a
modified tenfold CV which involves both outer tenfold CV
and inner fivefold CVs. In our tenfold CV, the training set
of n samples is randomly partitioned into ten folds of size
n/10. By retaining one fold for testing, we further invoke an
inner fivefold CV on the remained nine folds to determine the
optimal hyper parameters. Then, we train the classifier on the
nine folds with the optimal hyper parameters, and evaluate
the learned classifier using the retained test fold. Finally,
the results on the ten test folds are averaged to produce a
single estimation. Moreover, the running time of each method
is provided based on the ten runs of our tenfold CV. Following
the standard protocol on the LFW, beside the mean classifi-
cation accuracy with the standard deviation, we also provide
the receiver operating characteristic (ROC) curve as [27]–[29].
All the experiments are carried out on a desktop PC with
Intel(R) Xeon(R) CPU (3.30 GHz) and 32GB RAM under the
MATLAB 2015b programming environment. The CNN-based
experiments are implemented using the MatConvNet package
on the Tesla K80 GPU.

In experiments, a coarse-to-fine search strategy is adopted
for determining the hyper parameters within the inner fivefold
CVs. The grid search method is first adopted for coarse
searching, and then the line bisection method is exploited to
refine the hyper parameters within a small range. Concretely,
we set C ∈ {2cmin:cstep:cmax} with cmin = −10, cstep = 1,
cmax = 20, and σ ∈ {2σmin:σstep:σmax} with σmin = −20,

1http://archive.ics.uci.edu/ml/index.php

TABLE II

COMPARISON OF THE AVERAGE CLASSIFICATION ACCURACY (%)
BY LINEAR SVM, LINEAR RMM [5], LINEAR R-SVM+ [7],

LINEAR R-SVM+μ [7], AND LINEAR F-SVM

σstep = 1, σmax = 5 for Gaussian RBF kernel. We also tune the
optimal parameter ρ for each data set from ρ ∈ {2ρmin:ρstep:ρmax}
with ρmin = −2, ρstep = 0.5, ρmax = 6. When updating
M through the gradient-projection method, the stepsize t is
initialized as 1, and decreases gradually controlled by β = 0.9
as shown in Algorithm 1. The source codes of F-SVM and
Kernel F-SVM are online available.2

A. Results on the UCI Data Sets

1) Evaluation on Linear F-SVM: Table II and Fig. 3 present
the average classification accuracy and run time of our linear
F-SVM and the competing methods. As shown in Table II,
RMM [5], R-SVM+, and R-SVM+μ [7] generally outperform
the standard SVM with an average accuracy of 0.8% above,
which indicates that the incorporation of the radius is effective
in improving classification performance. In addition, F-SVM
achieves the best or the second best classification accuracy
on most data sets, and obtains an average improvement
of 2.14% over SVM. Specifically, the improvement of F-SVM
over SVM is higher than 4.0% by accuracy on 6 data sets,

2https://github.com/tourmaline612/FSVM
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TABLE III

COMPARISON OF THE AVERAGE CLASSIFICATION ACCURACY (%) OF

KERNEL SVM, KERNEL RMM [5], KERNEL R-SVM+ [7],
KERNEL R-SVM+μ [7], AND KERNEL F-SVM

Fig. 3. Comparison of the run time (in seconds, s) of linear SVM, linear
RMM [5], linear R-SVM+ [7], linear R-SVM+μ [7], and linear F-SVM.

Fig. 4. Comparison of the run time (in seconds, s) of kernel SVM, kernel
RMM [5], kernel R-SVM+ [7], kernel R-SVM+μ [7], and kernel F-SVM.

i.e., Breast, Glass, Liver, Sonar, Wpbc, and Zoo. Fig. 3 shows
the run time of the competing methods in training. Benefitted
from our initialization scheme and the GBCD algorithm,
F-SVM is about 103 times faster than RMM, R-SVM+ and
R-SVM+μ , and is moderately slower than SVM.

2) Evaluation on Kernel F-SVM: We further compare kernel
F-SVM with kernel SVM, kernel RMM [5], kernel R-SVM+,
and kernel R-SVM+μ [7] on the UCI data sets. Due to the
combination of kernel PCA, we take a strategy based on eigen-
values to choose the optimal dimension. A ratio of 0.9 between
the cumulative eigenvalues and the sum of all eigenvalues is
set for dimension selection. From Table III, kernel F-SVM
achieves the highest classification accuracy on 19 of the
20 data sets among the competing methods, and obtains an

average improvement of 2.7% over kernel SVM. In contrast,
the kernel RMM, kernel R-SVM+ and kernel R-SVM+μ only
have an average improvement of about 0.7%. On the data
sets Breast, Ionosphere, Sonar, and Wpbc, the improvement
of kernel F-SVM over kernel SVM is higher than 5.0% by
accuracy. From Fig. 4, the run time of kernel F-SVM remains
about 103 times faster than that of kernel RMM, kernel
R-SVM+, and kernel R-SVM+μ . Note that the reported time
does not include the time of kernel PCA. It can be observed
that, on most UCI data sets, the kernel versions of F-SVM,
SVM and other radius-margin-based SVM variants perform
comparatively to their linear models, which is consistent with
that in [5] and [7]. It can be attributed to the small scale data
sets and their linear separability.

3) Parameter Effect: Using the Breast data set, we evaluate
the effect of hyper parameters, including the tradeoff C ,
the kernel parameter σ in kernel F-SVM, and the parameter ρ.
It can be seen from Fig. 5(a), when C < 0.1, the accuracy is
relatively low. The classification accuracy can be significantly
improved along with the increase of C to 2, and drops
significantly when C > 103. From Fig. 5(b), one can see
that better accuracy can be obtained by using larger C (e.g.,
C = 256) and smaller σ (e.g., σ = 0.0625). It can be
seen from Fig. 5(c), the optimal range for the parameter ρ
is [1/

√
2,
√

2] for linear F-SVM. Similar conclusion can be
obtained from other data sets.

4) Convergence Analysis: Using the Breast data set, we fur-
ther show the convergence of the GBCD algorithm. As illus-
trated in Fig. 6, the objective value rapidly decreases and
converges within 10 iterations.

B. Results on the LFW Face Database

The LFW database consists of more than 13 233 face images
from 5749 persons. The images in LFW are collected from
the Internet, and vary in pose, illumination, expression, and
age, making LFW very challenging for unconstrained face
verification. The face recognition method can be evaluated
with two test protocols for LFW: the restricted and the
unrestricted settings. Under the restricted setting, the only
available information is whether each pair of training images
is matched or not, and the performance is evaluated by our
tenfold CV on a set of 300 positive and 300 negative image
pairs. In our experiments, we adopt the restricted setting with
the face images aligned by the funneling method [30].

On LFW, three groups of experiments are conducted by
using the Attributes [31], scale-invariant feature transform
(SIFT) features, and Oxford Visual Geometry Group Face-
CNN (VGG-Face) deep features [32]. The 73-dimensional
attribute features include both the describable characteristics
(e.g., gender, nose size, and expression) and similes (similarity
with a specific reference person) to describe face image. The
SIFT features are extracted at nine fiducial points on three
scales, resulting in a 3456-dimensional feature vector. The
VGG-Face deep features are computed using VGG-16 CNN
architecture provided by Parkhi et al. [32] Different from [32],
we simply crop a 160×160 map from the center pixel, resize
it to 224 × 224 for the deep network, and output a 4096-
dimensional feature vector.
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Fig. 5. Parameters analysis on the Breast data set. (a) C in linear F-SVM. (b) C and σ in kernel F-SVM. (c) Parameter ρ in linear F-SVM.

Fig. 6. Convergence curve on the Breast data set.

TABLE IV

COMPARISON RESULTS OF THE KERNEL SVM-BASED METHODS
ON LFW BY USING THREE TYPES OF FEATURES

Based on the comparison results of linear and kernel
F-SVM on UCI data set, we evaluate kernel F-SVM on LFW
and compare it with kernel SVM, kernel RMM [5], kernel
R-SVM+, and kernel R-SVM+μ [7]. Due to the limitation
of computational and memory cost of RMM, R-SVM+ and
R-SVM+μ , we use the PCA for dimensionality reduction with
the same strategy introduced in Section V-A.

From Table IV, among the radius-margin-based SVM vari-
ants, kernel F-SVM achieves the best verification accura-
cies on all three types of features. In comparison to the
SVM baselinethe, the improvement of F-SVM is 1.61% on
Attribute and 1.65% on SIFT features. Using deep features,
all the competing methods can attain an obvious performance
improvement. Moreover, even SVM can achieve comparable
accuracy with the radius-margin-based SVM variants RMM,
R-SVM+μ , and R-SVM+, F-SVM can still get an improvement
of 1.33% over SVM.

We further compare kernel F-SVM with several recent
face verification methods, i.e., DDML [27], HPEN+HD-
Gabor+JB [28], and MDML-DCPs [29], which are also based
on deep CNNs. Fig. 7 shows the ROC curves of the competing
methods and Table V lists the accuracy and AUC scores.
Our kernel F-SVM with deep features achieves a verification
accuracy of 97.15% and the AUC of 0.9958, which are higher
than the competing methods.

TABLE V

VERIFICATION ACCURACY (%) AND AUCS BASED ON DEEP FEATURES

Fig. 7. ROC curves on LFW.

C. Results on Image Classification Data Sets

Finally, experiments are conducted to evaluate F-SVM
on four large-scale image classification data sets,
including MNIST, CIFAR-10 [25], CIFAR-100 [25],
and Caltech101 [26]. For fair comparison with the state of
the arts, we stack the F-SVM model upon the deep CNNs
(e.g., AlexNet). Fig. 8 illustrates the architecture of AlexNet
(F-SVM). To incorporate F-SVM with deep CNN, the model
can be formulated as

min
w,b,M,W

1

2
(w�M−1w)+ Lw + LM

s.t. M � 0 (26)

where W denotes the CNN parameters. The loss on w is
defined as Lw = C

∑n
i=1 max(0, 1 − yi (w��(xi ;W) + b)).

The loss on M is defined as LM = ρ
∑n

i=1(�(xi ;W) −
�̄x)
�M(�(xi ;W) − �̄x), �̄x = (1/n)

∑n
i=1 �(xi ;W).

As illustrated in Fig. 8, we replace the softmax layer
in AlexNet with the classifier (w, b) minimized by hinge
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Fig. 8. Diagram of stacking the F-SVM on the deep neural network.

loss. Furthermore, a matrix M is introduced to con-
strain w and �(xi ;W). Note that all the parameters
w, b, M, W are differentiable, and can be end-to-end
trained. Specifically, M is updated by PGD, and the
PSD projection is empirically adopted after each c iter-
ations for efficiency. In the implementation, the mean
�̄x is computed in a mini-batch manner. Moreover,
AlexNet (F-SVM) can be extended to other CNNs, e.g.,
ResNet-50 [33] and ResNet-110 [33], to obtain ResNet-50
(F-SVM) and ResNet-110 (F-SVM).

Considering the input image size, we deploy different CNNs
to the four data sets, i.e., ResNet-110 on MNIST (28× 28),
CIFAR-10 and CIFAR-100 (32×32×3) data sets, and ResNet-
50 on Caltech101. As for Caltech101, since most competing
methods report their results based on AlexNet [34], for fair
comparison we also provide the result by AlexNet (F-SVM).
In the experiments, we also implement a variant of the CNN by
replacing the softmax loss with hinge loss, i.e., CNN (SVM).
To better connect the ResNet and F-SVM, a fully connected
layer with a 512-dimensional output is added for feature
extraction. For ResNet-110, the learning rate starts from 10−1,
and is decreased by a factor of 10 after every 80 epochs. we
use a weight decay of 10−4 and a batch size of 128. For
ResNet-50, we use the pretrained model on ImageNet, and
the images are resized to 224 × 224 × 3. A weight decay
of 10−4 and the batch size of 128 are utilized. For AlexNet,
the images are resized to 227 × 227 × 3. The learning rate
starts from 10−2, and is divided by 10 after every 40 epochs.
The weight decay is set as 5 × 10−4 and the batch size is
set to 64. The training is terminated after 200 epochs for all
networks.

1) MNIST: Due to the small image size, we conduct exper-
iment based on ResNet-110 and the results are presented
in Table VI. Using the default softmax loss, ResNet-110 can
obtain the error rate of 0.45%. In contrast, ResNet-110 with
hinge loss obtains the error rate of 0.43%, which indicates
that softmax loss and hinge loss result in similar perfor-
mance on MNIST. Moreover, by incorporating the radius
information with hinge loss, ResNet-110 (F-SVM) attains the
error rate of 0.35%, which is lower than those by ResNet-110,
ResNet-110 (SVM), and the state of the arts. We note that
most recent methods can achieve very high accuracy on

MNIST, making the improvement of ResNet-110 (F-SVM) not
so notable. Thus, more experiments are conducted on three
more challenging data sets, i.e., CIFAR-10, CIFAR-100, and
Caltech101.

2) CIFAR-10: The CIFAR-10 data set [25] consists
of 60 000 natural color images from 10 classes, with
6000 images per class. The data set consists of a training
set of 50 000 images and a test set of 10 000 images.
Following [35], all the input images are preprocessed by global
contrast normalization and zero-phase component analysis
whitening. For ResNet-110, we follow the data augmentation
in [36] for training: four pixels are padded on each side,
and a 32 × 32 crop is randomly sampled from the padded
image or its horizontal flip. When testing, we only evaluate
a single view of the original 32 × 32 image. We compare
ResNet-110 (SVM) with several state-of-the-art deep models
[35]–[39]. From Table VI, one can see that softmax loss
performs similar to hinge loss, while ResNet-110 (F-SVM)
outperforms ResNet-110 by 1.72% and ResNet-110 (SVM)
by 1.22%. Besides, ResNet-110 (F-SVM) also performs
better than most state-of-the-art methods, demonstrating the
superiority of the incorporation of radius-margin based loss.

3) CIFAR-100: CIFAR-100 contains 32× 32 color images
with the same training/testing split to CIFAR-10, but has
100 classes. From Table VI, ResNet-110 (F-SVM) achieves
the lowest error rate of 30.94% in comparison of the state of
the arts. The improvement of ResNet-110 (F-SVM) is 3.40%
over ResNet-110, and 2.44% over ResNet-110 (SVM).

4) Caltech101: The Caltech101 data set [26] consists
of 9144 images from 102 classes. For each class, there are
about 40 to 800 images, and we randomly select 30 samples
per class for training. Table VII presents the results by our
methods, the baselines and the state of the arts. For fairness,
we compare AlexNet (F-SVM) with several AlexNet-based
CNNs, including Zeiler and Fergus [40], DeCAF [41], and
Chatfield et al. [42]. It can be seen from Table VII, AlexNet
(F-SVM) achieves the error rate of 9.83%, and outperforms the
other AlexNet-based methods. Specifically, AlexNet (F-SVM)
outperforms its counterparts, i.e., AlexNet and AlexNet (SVM)
with a large margin. Furthermore, we perform experiments on
ResNet-50 pretrained on ImageNet and each image is resized
to 224× 224× 3 as input. As given in Table VII, ResNet-50
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TABLE VI

TESTING ERROR RATE ON MNIST, CIFAR-10,
AND CIFAR-100 DATA SETS

TABLE VII

TESTING ERROR RATE ON CALTECH101 BY USING

30 TRAINING SAMPLES PER CLASS

(F-SVM) not only outperforms its counterparts, i.e., ResNet-
50 and ResNet-50 (SVM), but also achieves the testing error
rate of 5.89%, which is comparable to the state of the arts.

VI. CONCLUSION

In this paper, we proposed a convex radius-margin-based
SVM model, dubbed as F-SVM, for joint learning of the
feature transformation and SVM classifier. For the formulation
of F-SVM, lower and upper bounds of the radius of the MEB
are introduced to derive a novel radius approximation, and
all the individual inequality constraints are combined into
one integrated inequality constraint, resulting in a convex
relaxation of the radius-margin-based SVM model. For model
optimization, a semiwhitened PCA-based method is proposed
for initialization, and a GBCD algorithm is adopted to learn
the feature transformation and classifier. Further, F-SVM is
kernelized by using kernel PCA. Experimental results show
that F-SVM obtains higher classification accuracy than SVM
and state-of-the-art radius-margin-based SVM methods [5],
[7], and is efficient in training. In the future work, we will
extend the relaxed radius-margin-based error bound to other
learning models and extend F-SVM for learning other forms
of feature transformation tailored for specific applications.

APPENDIX A

Lemma A.1: R̄ ≥ R. Proof: Based on the definition of
the radius, we get

R2 = min
x0

max
i
�Axi − Ax0�22

≤ max
i
�Axi − Ax̄�22

= R̄2.

Denote by Rp the maximum pairwise distance. We have

Rp = max
i, j

{�Axi − Ax j�22
}
.

Lemma A.2 [7]: R ≥ Rp/2.
Lemma A.3: R̄ ≤ Rp .

Proof: Let x�i = Axi−Ax̄. We have Axi−Ax j = x�i−x�j .
Based on the definition of R̄

R̄2 = max
i

{∥
∥x�i

∥
∥2} = ∥

∥x�i∗
∥
∥2

we will prove that there exist some j∗ which makes
�x�i∗ − x�j∗�2 ≥ �x�i∗�2. Based on the definition of x̄, we have
∑

j x�j = 0. Then, we derive
∑

j

x�j x�i∗ = 0⇒ min
j

{
x�j x�i∗

} = x�j∗x�i∗ ≤ 0.

Since �x�j∗�2 ≥ 0 and −2x�j∗x�i∗ ≥ 0, it can be seen that
∥
∥x�i∗ − x�j∗

∥
∥2 ≥ ∥

∥x�i∗
∥
∥2

.

Based on the definition of Rp

R2
p ≥

∥
∥x�i∗ − x�j∗

∥
∥2

.

Combining the above two inequalities, we prove R̄ ≤ Rp .
Finally, by combining Lemmas 1∼3, we get:
Theorem 1: The margin R is bounded by R̄ by

1

2
R ≤ R ≤ R.

APPENDIX B

Lemma B.1: The model in (11) can be equivalently refor-
mulated into the F-SVM model in (12).

Proof: We define

f (w, b, ξ , M) = 1

2
(w�M−1w)+ C

n∑

i=1

ξi

s.t. yi (w�xi + b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . , n

M � 0.

The model in (11) can be rewritten as

min
w,b,ξ,M

f (w, b, ξ , M), s.t.
n∑

i=1

ωi (xi − x̄)�M(xi − x̄) ≤ ε

and the associated Lagrangian function [44] is defined as

min
w,b,ξ,M

max
ρ�

L(w, b, ξ , M, ρ�)

= 1

2
(w�M−1w)+ C

n∑

i=1

ξi

+ ρ�
(

n∑

i=1

ωi (xi − x̄)�M(xi − x̄)− ε

)

s.t. yi (w�xi + b) ≥ 1− ξi , ξi ≥ 0 ∀i, M � 0.

According to [15], for every ε ≥ 0, there exists some ρ
corresponding to the corresponding optimal solution to ρ�.
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With the optimal solution ρ, the problem above can be
rewritten as

min
w,b,ξ,M

{
1

2
(w�M−1w)+ C

n∑

i=1

ξi + ρtr(MS)− ρε

}

s.t. yi (w�xi + b) ≥ 1− ξi , ξi ≥ 0 ∀i, M � 0

where S = ∑n
i=1 ωi (xi − x̄)(xi − x̄)�. Note that ρε is

independent of w, b, ξ , M and can be safely discarded.
Thus, the subproblem of w, b, ξ , M can be reformulated
into (12).

APPENDIX C

Lemma C.1 [45]: Given two SPD matrices A and B,
we have

(A+ B)−1 = A−1 − A−1(A−1 + B−1)
−1

A−1 (27)

(A+ B)−1 = A−1(A−1 + B−1)
−1

B−1

= B−1(A−1 + B−1)
−1

A−1. (28)

Theorem 3: The F-SVM model in (12) is a convex opti-
mization problem.

Proof: Note that all the constraints define a convex set,
and

∑
i ξi and tr(MS) are linear to ξ and M, respectively.

Then the key step is to prove that the function w�M−1w is
convex for M � 0, i.e., for any 1 ≥ θ ≥ 0

θw�1 M−1
1 w1 + (1− θ)w�2 M−1

2 w2

≥ (θw1 + (1− θ)w2)
�(θM1 + (1− θ)M2)

−1

×(θw1 + (1− θ)w2).

(θw1 + (1− θ)w2)
�(θM1 + (1− θ)M2)

−1(θw1+ (1−θ)w2)
contains three terms

θ2w�1 (θM1 + (1− θ)M2)
−1w1

(1− θ)2w�2 (θM1 + (1− θ)M2)
−1w2

θ(1− θ)w�1 (θM1 + (1− θ)M2)
−1w2.

First, we have

θ2(θM1 + (1− θ)M2)
−1

= θ

(

M1 + (1− θ)

θ
M2

)−1

= θ

⎛

⎝M−1
1 −M−1

1

(

M−1
1 +

(
(1− θ)

θ
M2

)−1
)−1

M−1
1

⎞

⎠

= θM−1
1 −M−1

1 ((θM1)
−1 + ((1− θ)M2)

−1)
−1

M−1
1

(29)

and then we obtain

θw�1 M−1
1 w1 − θ2w�1 (θM1 + (1− θ)M2)

−1w1

= w�1 M−1
1 ((θM1)

−1 + ((1− θ)M2)
−1)
−1

M−1
1 w1. (30)

Analogously, we obtain

(1− θ)w�2 M−1
2 w2 − (1− θ)2w�2 (θM1 + (1− θ)M2)

−1w2

= w�2 M−1
2 ((θM1)

−1 + ((1− θ)M2)
−1)
−1

M−1
2 w2. (31)

With (29), we have

θ(1− θ)w�1 (θM1 + (1− θ)M2)
−1w2

= w�1 M−1
1 ((θM1)

−1 + ((1− θ)M2)
−1)
−1

M−1
2 w2. (32)

Combining (29)–(32), we obtain

θw�1 M−1
1 w1 + (1− θ)w�2 M−1

2 w2

−(θw1 + (1− θ)w2)
�(θM1 + (1− θ)M2)

−1

× (θw1 + (1− θ)w2)

= w�1 M−1
1 ((θM1)

−1 + ((1− θ)M2)
−1)
−1

M−1
1 w1

+w�2 M−1
2 ((θM1)

−1 + ((1− θ)M2)
−1)
−1

M−1
2 w2

−2w�1 M−1
1 ((θM1)

−1 + ((1− θ)M2)
−1)
−1

M−1
2 w2

= ∥
∥((θM1)

−1 + ((1− θ)M2)
−1)
− 1

2
(
M−1

1 w1 −M−1
2 w2

)∥
∥

2

≥ 0.

Thus, the F-SVM model is convex.

APPENDIX D

Theorem 4: Given a SPD matrix S and τ � > 0, B̂ defined
in (15) is the optimal solution to the problem

B̂ = arg min
B
{L(B, τ �) = �B�∗ + τ �(tr(B−1S))}.

Proof: L(B, τ �) is strictly convex with respect to B [28].
Given g(B) = τ �tr(B−1S), we have

∂g

∂B
= −τ �(B−1SB−1)

�
.

From [17] and [46], the set of subgradients of the nuclear
norm ∂�B�∗ can be represented as

∂�B�∗ = {Ū�̄Ū� +W|W ∈ Rd×d , Ū�W = 0

WŪ = 0, �W�2 ≤ 1}
where Ū�̄Ū� is the eigenvalue decomposition of B, each
column of Ū is a eigenvector, �̄ is a diagonal matrix with
�̄ = Diag(σ1, σ2, . . . , σd ) (0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σd ).

To prove that B̂ is the optimal solution, we will show that

0 ∈ −τ �(B̂−1SB̂−1)
� + ∂�B̂�∗

where 0 denote a zero matrix (i.e., a matrix consisting of all
0s). With the matrix B̂ in (14), we have

τ �(B̂−1SB̂−1)
� = UU�.

Let W = 0. We have U�W = 0, WU = 0, and �W�2 ≤ 1.
Thus UU� ∈ ∂�B̂�∗, and B̂ is the optimal solution.
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