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Inference With Collaborative Model for Interactive
Tumor Segmentation in Medical Image Sequences

Liang Lin, Wei Yang, Chenglong Li, Jin Tang, and Xiaochun Cao

Abstract—Segmenting organisms or tumors from medical data
(e.g., computed tomography volumetric images, ultrasound, or
magnetic resonance imaging images/image sequences) is one of
the fundamental tasks in medical image analysis and diagno-
sis, and has received long-term attentions. This paper studies a
novel computational framework of interactive segmentation for
extracting liver tumors from image sequences, and it is suit-
able for different types of medical data. The main contributions
are twofold. First, we propose a collaborative model to jointly
formulate the tumor segmentation from two aspects: 1) region
partition and 2) boundary presence. The two terms are com-
plementary but simultaneously competing: the former extracts
the tumor based on its appearance/texture information, while
the latter searches for the palpable tumor boundary. Moreover,
in order to adapt the data variations, we allow the model to
be discriminatively trained based on both the seed pixels traced
by the Lucas–Kanade algorithm and the scribbles placed by the
user. Second, we present an effective inference algorithm that
iterates to: 1) solve tumor segmentation using the augmented
Lagrangian method and 2) propagate the segmentation across
the image sequence by searching for distinctive matches between
images. We keep the collaborative model updated during the
inference in order to well capture the tumor variations over
time. We have verified our system for segmenting liver tumors
from a number of clinical data, and have achieved very promis-
ing results. The software developed with this paper can be found
at http://vision.sysu.edu.cn/projects/med-interactive-seg/

Index Terms—Collaborative model, medical image analysis,
spatio-temporal inference, tumor segmentation.

I. INTRODUCTION

FOR decades, medical imaging technologies, such as com-
puted tomography (CT), magnetic resonance imaging

(MRI), and ultrasound (US), have played a central role in
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tumor detection and diagnosis as well as surgery planning [1].
Since radiologists usually consider diagnosis and planning
based on analyzing tumors’ properties with image slices, accu-
rate tumor extraction is generally essential and quite beneficial.
Manual annotation of tumors, however, is time-consuming
especially with a large amount of image sequences, and the
delineation quality often depends on the operators. Hence,
computational medical image segmentation receives long-
term attentions for clinical analysis, and various segmentation
methods have been proposed.

Liver cancer is the second most frequent cause of cancer
death worldwide in men and the sixth in women, accord-
ing to the report in [2]. Tumor segmentation is critical for
liver clinical diagnosis and surgery. Therefore, this paper aims
to develop an interactive segmentation system1 for extracting
liver tumors from medical image sequences (e.g., volumetric
images or videos), and it is suitable for different types of med-
ical data (e.g., CT, MRI, or US). Particularly, we consider the
following two difficulties to build such a system.

1) There are a great diversity of liver tumor types (e.g.,
hemangioma, focal nodular hyperplasia, and hepatocel-
lular carcinoma) with various modalities [1], [3], [4],
and tumors are sometimes difficult to be distinguished
from healthy tissues. In addition, the quality of medi-
cal imaging is highly affected by devices and individual
variances. Thus, it is very challenging to construct a uni-
versal model (or detector) to separate well the tumors
against background tissues, even a few user intervention
could be allowed.

2) Medical image sequences usually include many slices
(say more than 100), and it is impractical to operate on
every slice to assist segmentation. Given one segmented
slice, the system is required to automatically propagate
the segmentation into consecutive image slices. It is
a nontrivial task because the shape or appearance of
tumors probably vary over the image sequence because
of the organ’s physiological deformation. In addition,
the imaging condition sometimes temporally changes,
which alters the brightness and the contrast of images.

We address the above issues from two aspects. First, we
present a collaborative model to capture the tumor variations
by tightly integrating region and structure (shape) informa-
tion. More precisely, the model comprises two coupled terms:
1) region partition and 2) boundary presence. The two terms

1The software and testing data are available at: http://vision.sysu.edu.cn/
projects/med-interactive-seg/
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Fig. 1. Segmentation results generated by our system in a noncontrast CT volumetric images (first row) and a US image sequence (second row). There
are 73 slices in the CT volumetric images, and three foreground scribbles plus three background scribbles have been placed in the tenth slice. To polish the
segmentation, four foreground scribbles and three background scribbles are further added in the 42nd slice. The US image sequence contains 36 slices, where
we draw two foreground scribbles and four background scribbles in the first slice. For illustration, results in this figure are sampled from the sequences. The
tumors are covered by red masks and the user scribbles are highlighted by yellow (foreground) and blue (background), respectively.

not only provide the complementary information for segmen-
tation but also compete to each other to conduct the consistent
solution. The region term is defined based on the appear-
ance/texture difference between the tumor and background,
while the boundary term is defined based on the local struc-
ture/edge features. In the previous works on medical image
segmentation, most of these methods consider only region
appearance [4], [5] or only boundary shape [6], [7]. A number
of methods had been suggested to combine region appearance
with the boundary shape [8]–[10] and showed very promising
results. Compared with these methods, our model is allowed to
be discriminatively trained with user placed scribbles, and the
pixels annotated by the scribbles are treated as either positive
or negative examples. Unlike some interactive segmentation
systems with fixed parameters [11], [12], we adjust the model
parameters to adapt the variations of tumors with different
types of medical data.

Second, we propose an efficient iterative algorithm for the
inference of image sequence segmentation comprising two
following main steps.

1) We optimize the model for segmenting the key slice that
can be either the first slice of a sequence or an arbitrary
slice specified by the radiologist. In our representation,
the two terms (i.e., region partition and boundary pres-
ence) are tightly coupled, and each of them is defined
to assign a discrete label (i.e., tumor or nontumor) for
pixels, resulting in a nonconvex formulation. The model
is thus intractable to be analytically optimized. To over-
come this problem, we relax the formulation into an L1
regularized convex optimization, and then propose an
alternating direction method of multipliers (ADMMs) to
solve the model [13], [14], which can guarantee to con-
verge to global optimal solution and each subproblem
has the closed form solution.

2) We propagate the segmentation from the key slice into
the rest of image slices by extracting the correspon-
dences over the images. A batch of discriminative pixels
are selected as seed points from the segmented tumor
area and nontumor area of the key slice. We trace
these points across the consecutive image slices while

removing some matching outliers. The traced points at
each image slice can be then treated as training samples
to incrementally update the collaborative model (i.e.,
to make the model adapt to the new data). Afterward,
we generate the accurate segmentations for the images
by applying the optimization method in the first step.
Similar techniques for segmentation propagation were
studied in video segmentation [15]. The main differ-
ence of our approach with theirs is that we keep our
model updated during the propagation process to adapt
appearance variation of the tumors against surrounding
tissues.

The inference procedure can be flexibly assisted and refined
by hand. Radiologists are allowed to add/remove scribbles
to correct the segmentation on any single slices; the refine-
ment is also available during the propagation by selecting
a new key slice and retriggering the process. One can
also fix segmentations on some slices to avoid modifica-
tion during the refinement process. Two examples of liver
tumor segmentation generated by our system are presented in
Fig. 1, where one is processed on a nonenhanced CT vol-
umetric images, and the other on an US image sequence.
For illustration, we sample a few results from the image
sequence, and the tumors are covered by red masks and the
background by green masks, while the user scribbles are
highlighted by yellow (foreground) and blue (background),
respectively.

We have applied our system with several clinical med-
ical data and shown very promising results. To show the
effectiveness of our model, we first compare our method on
single slice segmentation with two well-applied interactive
segmentation method (i.e., the GrabCut [11], and the geodesic
active contour (GAC) [12]), and one fully supervised algo-
rithm (i.e., the semantic texton forest [16]). We then conduct
the experiments on image sequence segmentation and show
the superior performance of our method over the active con-
tour model [17] and the hybrid level-set method (HLM) [18].
Moreover, we empirically evaluate how the main components
contributing to the framework, as well as the robustness of user
interactions.
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The main contributions of our system are summarized as
follows. First, we propose an effective collaborative model to
represent tumors in terms of coupling region and boundary
information, which can be incrementally updated during seg-
mentation. Second, a novel inference framework is developed
to efficiently and accurately segment the images and image
sequences with very few user interactions. Last, the proposed
system is very applicable for clinic applications due to its
robustness and flexibility.

A. Literature Review

In medical informatics, CT and MRI provide an excep-
tional resolution to tumor analysis, and many computational
segmentation approaches on CT and MRI have been exten-
sively studied [1], [3], [5], [19]–[23]. Compared with CT and
MRI, US imaging is cheaper, safer, and less laborious, but is
more challenging for segmentation due to the speckle noise,
low contrast, and low resolution of imaging [24]. By far, not
many works focus on US data [24], and very few approaches
are designed to handle multiple types of medical data due
to the appearance diversity caused by different imaging
mechanism.

Generally, there are several types of methods for
medical image segmentation, e.g., deformable models,
thresholding approaches, statistical models, and interactive
methods. Deformable models, especially active contour mod-
els [12], [25] and level set methods [26], were widely used for
liver tumor segmentation [1], [3], [6], [7], [27]. Lu et al. [6]
solved CT volumetric images segmentation by combining the
active contour segmentations in CT slices. Wong et al. [7]
further incorporated the size and shape constraints to obtain
more accurate segmentations. Smeets et al. [3] proposed a
3-D tumor image sequence segmentation method by adopt-
ing the 3-D level set method and fuzzy pixel classification
method. Li et al. [1] extended the traditional level set method
by incorporating image gradient, region competition and prior
information, and achieved impressive results.

For improving segmentation accuracy, thresholding and
morphological techniques were further introduced [20].
Hame [19] segmented the liver tumors with the threshold-
ing and morphological operations and refined by spatial fuzzy
clustering. Despite acknowledged successes, the performances
of these methods are not always satisfactory in practice, as
they rely on some strict assumptions on tumor appearances
(e.g., close boundaries or distinct regions against surrounding
tissues), and the parameters of the models are often tuned and
fixed.

Recently, the methods based on statistical learning tech-
niques are introduced to model the variations of tumor appear-
ance and shape. Corso et al. [28] proposed a Bayesian tumor
segmentation framework for incorporating soft model assign-
ments into the calculation of affinities to take a step toward
bridging the gap between bottom-up affinity-based segmen-
tation and top-down generative model. Kubota [5] localized
candidate tumors by training a detector on small voxels of
CT volumetric images, and obtained the final segmentation
by postprocessing. Stawiaski et al. [21] introduced the MRF

Fig. 2. Collaborative representation of a CT image with liver tumor. The
image domain is decomposed into foreground region I+R and background
region I−R . We also distinguish boundaries I+B from the rest of image I−B . We
strictly constrain that I+B = ∂I+R to couple the two terms in the collaborative
representation.

model to solve the tumor segmentation together with an unsu-
pervised watershed method. These approaches performed well
on challenging scenarios, but often relied on a large amount
of labeled data for offline supervised learning [29], and might
be problematic in extracting tumors with large within-class
variance.

Besides, many user-aided (i.e., interactive)
approaches [1], [3], [4], [6], [20], [21], [30] have been
exploited and are generally able to produce more reliable
segmentation or decomposition results than the automatic
methods, at the cost of utilizing user interactions. The ways
of interaction were analogous, such as specifying seed points
of tumor areas [3], [4], [31], tumor-centered regions of
interest (ROIs) [1], [6], [20], and drawing scribbles on the
tumor and nontumor area [21], [32]. As the radiologists can
flexibly manipulate the segmentation, these semi-automatic
systems are very suitable for clinic applications. However, the
user interactions are often very heavy and laborious for some
challenging cases, particularly for a long slice sequence,
e.g., placing scribbles carefully in every slice.

The rest of this paper is organized as follows. Section II
describes the representations for our model. Section III pro-
poses the inference method for image sequence segmentation.
The experimental results and comparisons are presented in
Section IV. This paper is concluded in Section V with the
discussions on future extensions of this paper.

II. COLLABORATIVE MODEL

In this section, we present the formulation of our collab-
orative model for tumor segmentation and discuss the model
parameter learning method.

We formulate the segmentation from two different aspects:
1) to partition the image I into foreground (i.e., tumor) region
I+R and background (i.e., nontumor) region I−R and 2) to local-
ize tumor boundary I+B from the rest of image I−B . These
two terms are constrained to consistently conduct the iden-
tical segmentation solution, so that we make these two terms
strictly coupled in definition, namely I+B = ∂I+R . We present
an example for illustration in Fig. 2.

For a pixel x in I, we adopt two indicator functions φ(x) and
θ(x) to define the solutions of region partition and boundary
presence, respectively, as

φ(x) =
{

1; x ∈ I+R
0; x ∈ I−R

; θ(x) =
{

1; x ∈ I+B
0; x ∈ I−B .

(1)
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The coupling of the two solutions can be then defined by
θ = |∇φ| over the whole image domain, where ∇ represents
the gradient operator. Thus, we present the dual form energy
function as

E(φ, θ) =
∑

x

φ(x)TR(x)+ α
∑

x

θ(x)TB(x)

s.t. θ = |∇φ| (2)

where α is a tuning parameter weighing the two tests, and
generally we choose some α < 1. TR(x) and TB(x) are the
region term and boundary term, respectively, and defined the
probability form as

TR(x) = − log
PR(φ(x) = 1|x)
PR(φ(x) = 0|x) (3)

TB(x) = − log
PB(θ(x) = 1|x)
PB(θ(x) = 0|x) . (4)

The formulation is partially motivated by the classical region
competition model proposed by Zhu and Yuille [33]. For com-
putational efficiency, we define TR(x) and TB(x) as binary clas-
sifiers that can be discriminatively trained with diverse image
features. In implementation, we train the region term TR(x)
online according to the foreground and background scribbles
placed by the radiologists and allow it to be incrementally
updated during processing. TB(x) is trained offline, similar to
learning-based edge detector [34], as it is expensive to let the
user to label tumor boundary during the segmentation process.

For training the two terms TR and TB, we specify the poste-
rior probabilities PR(φ(x)|x) and PB(θ(x)|x) by the exponential
family distribution, as

PR(φ(x) = 1|x) = exp
(∑

m βmhm(x; γm)
)

1+ exp
(∑

m βmhm(x; γm)
) (5)

where hm(x; γm) is a weak classifier (i.e., a specific appear-
ance feature from the feature vector) with the parameter
(threshold) γm, and βm is the corresponding coefficient. The
form of PB(θ(x)|x) is defined exactly the same as PR(φ(x)|x)
except for the image feature. Equation (3) can be thus
formulated as

log
PR(φ(x) = 1|x)
PR(φ(x) = 0|x) =

∑
m

βmhm(x; γm). (6)

In this paper, the Adaboost algorithm [35] is employed to effi-
ciently train this model in an incremental fashion. Specifically,
we aim to update only parts of the parameters (i.e., γm and βm)
rather than retraining the complete model when the model
needs to be adjusted duconsecutive ones.

A. Feature Descriptors

For capturing the region appearance in PR(φ(x)|x), we con-
catenate a local gray-level histogram and the dense SIFT
vector [36] to describe each pixel x. In implementation, the
gray-level histogram is a eight-bin vector computed on the
5 × 5 image domain covering x. Dense SIFT descriptor is
extracted by dividing the 12× 12 image domain into a 4× 4
cell array, and in each cell we use a vector including eight
digits to characterize image gradient in different directions.

By combining the two features together, each pixels is rep-
resented as a 136-bin vector. For the boundary feature in
PB(φ(x)|x), we compute the generic Haar wavelets on the
image domain covering the pixel x across multiple scales.
It is worth mentioning that the wavelets extracted from dif-
ferent scales implicitly incorporate the mid-level and context
information and greatly facilitate the boundary model training.

III. INFERENCE

In this section, we conduct the inference algorithm for
image sequence segmentation by two main steps: 1) opti-
mize the model to accurately segment the current slice and
2) propagate the segmentation to the unprocessed slices.

A. Model Optimization for Segmentation

The collaborative model in (2), which tightly couples the
region and boundary information, is intractable to be opti-
mized analytically as the discrete indicator φ and θ make
the formulation nonconvex. On the other hand, some noncon-
vex optimization methods [37] usually converge very slow or
require strict constraints, and might be unsuitable for our task.
In this paper, we seek an equivalent form of the model for
inducing a convex formulation.

Thus, we relax the binary indicator φ into a continu-
ous function ranging in [0, 1], and θ is also transformed
into the continuous form according to the constraint in (2),
i.e., θ = |∇φ| ∈ [0, 1]. This relaxation transforms the original
optimization objective into an equivalent continuous convex
formula

min
φ,θ

φTR + α|θ |TB, s.t. θ = ∇φ (7)

where

φTR =
∑

x

φ(x)TR(x)

|θ |TB =
∑

x

|θ(x)|TB(x) (8)

and ∇ denotes the gradient operator.2

Even the model in (7) is convex, the L1 term makes this
target nonsmooth and impractical to simultaneously update φ

and θ using the classical optimization methods such as con-
jugate gradient or Gauss–Seidel methods [39]. To overcome
this difficulty, we exploit the ADMM algorithm to update φ

and θ alternatively. ADMM is closely related with the split-
Bregman [14], Douglas–Rachford splitting [40], and inexact
augmented Lagrangian (AL) method [41], and can converge
to the global optimal solution [42]. Given the optimal solution
of this target, the final segmentation can then be generated by
thresholding φ on pixels.

We adopt the ADMM [13] to solve the convex optimization
problem in (7), where the AL function is defined as

L(φ, θ, λ, μ) = φTR + α|θ |TB + λ

2
||θ − ∇φ||22
+ μT(θ −∇φ) (9)

2As in [38], ∇ can be treated as either a gradient filter or a circulant
matrix. To save notation, we use the same ∇ to the gradient filter and its
matrix representation, and this should not cause ambiguity by referring to the
context.
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where λ > 0 is the AL penalty parameter and μ is a vector
of Lagrangian multiplier. With minor algebra, the AL function
can be equivalent represented as

L(φ, θ, λ, b) = φTR + α|θ |TB + λ

2
||θ −∇φ − b||22 (10)

where b = μ/λ.
Using the ADMM algorithm, the subproblem on φ can be

formulated as

φk+1 = min
φ

φTR + λ

2

∥∥∥θk − ∇φ − bk
∥∥∥2

2
. (11)

Using the strategy adopted in [38], we can derive the closed
form solution on φ. The optimal solution φk+1 should satisfy

φk+1 = (
λ∇T∇φ

)−1
(
∇Tφ

(
θk − bk

)
− TR

)
. (12)

With the fast Fourier transform (FFT), the closed form solution
on φ can be rewritten as

φk+1 = FFT−1

(
FFT

(
λ∇Tφ

(
θk − bk

)− TR
)

λFFT
(∇T∇φ

)
)

(13)

where “ ··” denotes the element-wise division. Note that
FFT(∇T∇φ) is zero in (0, 0). In our implementation, we
exclude the (0, 0)th element in the element-wise division.

The subproblem on θ can be formulated as

θk+1 = min
θ
|θ |TB + λ

2

∥∥∥θ −∇φk − bk
∥∥∥2

2
(14)

which can be analytically solved by the soft-thresholding
operator

θk+1
x = Tδ

(
∇φk

x + bk
x

)

= ∇φk
x + bk

x∣∣∇φk
x + bk

x

∣∣ ∗max
(∣∣∣∇φk

x + bk
x

∣∣∣− δ, 0
)

(15)

where δ is the parameter of shrinkage method.
In ADMM, b is updated using the following rule:

bk+1 = bk +
(
∇φk+1 − θk+1

)
. (16)

To accelerate the convergence speed, the penalty parameter λ

is initialized with a small value λmin and is updated after each
iteration using

λk+1 = min
(
ρλk, λmax

)
(17)

where ρ > 1 is a positive scalar.
Eckstein and Bertsekas [43] proved the convergence of the

ADMM algorithm.
Theorem 1 [43]: Consider the problem minθ,φ f (θ) +

g(φ), s.t. θ = Gφ, where G is full column rank, and
f and g are closed, proper convex functions. Consider arbi-
trary λ > 0 and θ0, φ0, and b0. Let ηk ≥ 0, k = 0, 1, 2, . . .

and νk ≥ 0, k = 0, 1, 2, . . . be two sequence with

∞∑
k=0

ηk ≤ ∞ and
∞∑

k=0

νk ≤ ∞.

Fig. 3. (a) Inference is conducted at different image scales in a coarse-to-fine
manner. An image pyramid is first built by repeated smoothing and subsam-
pling processing. (b) Energy defined in (2) is optimized from the coarser
layers to the finer layers.

Consider the three sequences {θk}, {φk}, and {bk} (k =
0, 1, . . .) that satisfy

∥∥∥∥θk+1 = arg min
θ

f (θ)+ λ

2

∥∥∥Gφ − θk − bk
∥∥∥2

2

∥∥∥∥ ≤ ηk∥∥∥∥φk+1 = arg min
φ

g(φ)+ λ

2

∥∥∥Gφk+1 − θ − bk
∥∥∥2

2

∥∥∥∥ ≤ νk

bk+1 = bk −
(

Gφk+1 − θk+1
)
.

If the problem has the global optimal solution θ∗, then the
sequence θk converges to θ∗.

It is obvious that the (7) satisfies the requirement of
Theorem 1, and the subproblems on φ and θ have the closed
form solutions. Thus, the proposed optimization algorithm
converges to the global minimum.

1) Coarse-to-Fine Computation: In order to further
improve the efficiency, we conduct the inference at different
scales of image in a coarse-to-fine manner. This multiscale
solving also makes the system more robust against noise. In
implementation, an image pyramid is first built by repeated
smoothing and subsampling operations. Then the inference
starts from the coarser layers to the finer layers. Each pixel x
in a specific layer obtains a response φ(x) ∈ [0, 1], indicat-
ing the confidence of predicting pixel x as foreground (tumor)
or background (nontumor). We then perform thresholding on
these responses. Pixels with responses greater than the upper
threshold (or smaller than the lower threshold) are predicted
as foreground (or background) with high confidences and are
fixed for optimization at the finer image layers. The rest of
pixels with ambiguous responses will be further repredicted
in the finer layers. The multiscale processing is illustrated
in Fig. 3.

B. Segmentation Propagation

For automatically propagating the segmentation from the
segmented slice Î to its consecutive slices, we propose a simple
yet effective algorithm for solving this problem by selecting
and tracing feature correspondences over consecutive slices
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while keeping the collaborative model updated. Our algorithm
relies on the following physiological observations.

1) The variations of tumor shape (boundary) are usually
smooth between two consecutive slices.

2) The rough location of the tumor is generally stable with
respect to the background organism (i.e., the liver).

Thus, we first select a batch of seed pixels from the nontu-
mor area of segmented slice Î and also enforce them apart from
the tumor boundary. We denote I−R and I+B as the nontumor
area and the tumor boundary of Î, respectively. For each pixel
x belonging to I−R , we compute its distance to the boundary
I+B as

d
(
x, I+B

) = min U(x, y), s.t. y ∈ I+B (18)

where U(x, y) is the Euclidean distance between two pix-
els x and y. By thresholding, we prune pixels with small
d(x, I+B ) and construct the set of seed pixels (denoted as Sb)
by randomly sampling from the remaining pixels.

Then we search for the seed pixels from the tumor area with
respect to the selected Sb. The pixels having distinct differ-
ences against the background nontumor areas are encouraged
to be chosen as matching correspondences, according to the
research of visual tracking [44], [45]. Hence, we define the
following criteria for determining the set of seed pixels in the
tumor area (denoted by Sf ):

S∗f = arg max
Sf

h(Sf )

h(Sb)

= arg max
Sf

∑
x∈Sf

∑
y∈Sb

KL(h(x) ‖ h(y))

s.t. Sf ∈ I+R (19)

where h(·) denotes the feature representation of pixels. Note
that we use the same feature as we discussed in Section II.
And the KL distance is defined as

KL(h(x) ‖ h(y)) =
∑

m

hm(x) ln
hm(x)

hm(y)
. (20)

Afterward, we trace the pixels in both Sb and Sf across
the consecutive image slices by Lucas–Kanade algorithm [46].
Note that some outliers during tracing can be easily removed
by voting. In these consecutive slices, the traced seed pixels
(i.e., the matches of Sb and Sf ) can be treated as either pos-
itive or negative samples for updating the region term of our
model in (3). At last, we segment these consecutive slices by
optimizing the energy with the updated model as we discussed
in the last section. The overall inference procedure is sketched
in Algorithm 1.

IV. EXPERIMENTS

We test our system on several data sets: SYSU-CT,
SYSU-US, and ITKs liver tumor (ILT) data set. The SYSU-CT
and SYSU-US are both provided by the first affiliated hospital,
Sun Yat-sen University, and ILT is a public data set avail-
able online.3 The SYSU-CT data set is constructed by seven
CT volumetric images of liver tumor from different patients;

3http://public.kitware.com/pub/itk/Data/LiverTumor/

Algorithm 1 Inference Sketch for Image Sequence
Segmentation
Input:

A sequence of medical image slices {Ik}Kk=1, K ≥ 1.
Output:

Segmentation results of all images in the sequence.

1 Select one key slice Î at first.
2 Draw scribbles on tumor and non-tumor areas in Î.
3 Extract training examples from the scribbles, and train the

model defined in Eq. (3).
4 Perform segmentation on Î by transferring the model into a

new convex formulation in Eq. (7).

WHILE not all slices segmented
1 Set Ĩ as the unsegmented slice adjacent to Î.
2 Propagate segmentation from Î to Ĩ:

a) Select discriminative seed pixels from Î (i.e., Sf

from the tumor area and Sb from the non-tumor
area) by Eq. (19).

b) Trace Sf and Sb into Ĩ by the Lucas-Kanade
algorithm;

c) Update the model parameters by treating the traced
points as training samples.

3 Perform segmentation on Ĩ by optimizing the model.
4 Î← Ĩ.

END

all the patients were scanned using a 64 detector row CT
machine (Aquilion64, Toshiba Medical System). The ILT data
set consists of six different patient CT volumetric images of
liver; all CT slices are 512 × 512 pixels with an in-plane
resolution of 0.6–0.8 mm, and are 5-mm slice spacing. The
SYSU-US data set consists of 20 US image sequences of
abdomen with liver tumor. The used equipment was Aplio
SSA-770A (Toshiba Medical System). The ground truths are
carefully annotated by experts. All the experiments are car-
ried out on an Intel Dual-Core E6500 (2.93 GHz) CPU and
8 GB RAM PC. The tuning parameter α in (2) is set to be five
for all experiments. The penalty function weight λ is initial-
ized as λmin = 0.1, and we choose ρ = 1.2 and λmax = 10.
The δ in shrinkage function (15) is 0.15.

In this paper, we use the segmentation accuracy as evalua-
tion criteria

I+R (S)
⋂

I+R (G)

I+R (S)
⋃

I+R (G)
.

This criteria measures overlap between the segmented tumor
area (I+R (S)) and the ground-truth area (I+R (G)).

We evaluate the proposed system from three aspects:
1) the capability of the collaborative model on single slice
segmentation; 2) the image sequence segmentation; and 3) user
study for the robustness of interaction.

At the beginning, we present a brief introduction for the
operation flow of our system, and the system interface is
exhibited in Fig. 4. The radiologists first select one key slice
from the image sequence. Scribble type (foreground for tumor
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Fig. 4. User interface of our system. (A) Document window. (B) Save/load scribbles. (C) Scribble settings. (D) Segment the current image. (E) Fix a segmented
area. (F) Select an ROI. (G) Start segmentation propagation. (H) Restart propagation from the choosing slice. (I) Open the results folder. (J) Browse slices in
videos. (K) Options bar.

area and background for nontumor area) and size can be
set in the scribble settings panel. After scribbles indicating
tumor/nontumor areas have been drawn, the tumor can be
fast extracted by calling segment function. Further refine-
ment can be achieved by adding or removing scribbles until
we find the result is satisfactory. Note that some segmented
area can be chosen to be fixed during the refinement through
choose fixed area panel. By calling propagate, the rest slices
of the sequence can be segmented. Radiologists are allowed
to polish the tumor segmentation at any slice and restart the
segmentation propagation procedure.

A. Experiment I: Capability of Collaborative Model on
Single Slice Segmentation

We first evaluate the effectiveness of the proposed model
by applying it for single slice segmentation. We compare
our system with two state-of-the-art interactive segmenta-
tion algorithm (i.e., GrabCut [11] and GAC [12]), one
automatic method (i.e., distance regularized level set evo-
lution (DRLSE) [47]), and one fully supervised algorithm
(i.e., semantic texton forest (STF) [16]). We adopt the pub-
lic available implementations of these algorithms. In addition
to show the benefit of the dual term representation, we sim-
plify our model by removing either the region term TR or the
boundary term TB as the baselines.

A CT images subset (subCT) contains 118 images
(66 from ILT and 52 from SYSU-CT), and a US images
subset (subUS) contains 144 images are collected for testing.

Fig. 5. Example of segmentations obtained by the simplified model.
(a) Ground-truth segmentation. (b) User scribbles. (c) We remove the bound-
ary term TB in the model and achieve segmentation. (d) Result obtained by
the complete model.

For fair comparison, we adopt the same user scribbles for all
interactive methods. And each image is tested on three differ-
ent interactions drew by different users, which ensures that the
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Fig. 6. Single slice segmentation results generated by our method, GrabCut [11], GAC [12], STF [16], and DRLSE [47]. One can see that our method
achieves promising segmentation results with few user scribbles and qualitatively outperforms other methods. (a)–(c) show three segmentation instances of
CT sequence and (d)–(f) show three segmentation instances of US video.

TABLE I
SEGMENTATION ACCURACY AND AVERAGE RUNNING TIME (SECONDS) ON SINGLE IMAGE SLICES.

THE BOLD FONTS INDICATE THE BEST PERFORMANCE

results are less dependent to the user interactions. Moreover,
as STF is a fully supervised algorithm, we randomly separate
half of the images for training and the other half for testing,
and repeat this procedure ten times to ensure randomness.

As Table I reports, the collaborative model (ours-full)
achieves the segmentation accuracy of 84.7% on subCT, and
76.3% on subUS. The quantitative results show that our pro-
posed model is capable of handling different types of medical
image data and achieves generally superior performances over
other competing approaches. Specifically, we observe that

GrabCut cannot accurately distinguish those tumors which
have similar appearances/gray scales with the surrounding
tissues, because this algorithm utilizes GMM-based color
model in the segmentation process. GAC and DRLSE (two
gradient-based level set methods) often fail when the tumors’
boundaries are blurry, which are mainly caused by the bound-
ary leaking issue. Moreover, due to large intraclass variations
and noisy, STF (i.e., the fully supervised learning method) is
limited to lacking of generalization performance, especially
on dealing with diverse medical image data. And the fully
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Fig. 7. Sample segmentation results generated by our method on five CT volumetric images. The tumors are covered by red masks while the background
is covered by green masks. One can see that our method achieves accurate spatial segmentation and temporal propagation with few user scribbles on CT
volumetric images in the context of drastic tumor changes. (a)–(e) show different segmentation instances.

supervised learning relies on a large number of manually
annotated samples for off-line model training. Several typi-
cal results are provided in Fig. 6. Based on the results, our
method is demonstrated to be more robust to some challeng-
ing scenarios, such as blurry boundaries [Fig. 6(a)] and tumors
very similar to surrounding tissues [Fig. 6(f)].

Besides, the collaborative model also achieves a significant
improvement compared with the baseline methods ours-R and
ours-B. Ours-R denotes the model with only the region term
and ours-B with only the boundary term. An example of com-
parison with the simplified model is shown in Fig. 5. It is

worth mentioning that our full system (ours-full) requires less
running time (0.52 s) compared with GrabCut (2.49 s), GAC
(6.63 s), STF (19.71 s), and DRLSE (65.70 s). The efficiency
is mainly due to the fast convex optimization.

B. Experiment II: Image Sequence Segmentation

This experiment demonstrates the performance of our
approach on image sequence segmentation. We compare
our framework with two well-applied approaches in medical
image analysis: the PDE-based active contour model, namely
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Fig. 8. Sample segmentation results generated by our method on four US image sequences. The tumors are covered by red masks while the background is
covered by green masks. One can see that our method achieves accurate spatial segmentation and temporal propagation with few user scribbles on US image
sequences. (a)–(d) show different segmentation instances.

Fig. 9. Sample segmentation results generated by our method on one MRI image sequence. The tumors are covered by red masks while the background
is covered by green masks. One can see that our method achieves accurate spatial segmentation and temporal propagation with few user scribbles on MRI
image sequence.

Chan–Vese model (CVM) [17], and the HLM [18]. We also
compare with the state-of-the-art interactive video segmen-
tation method [48] (called RotoBrush in this paper), which
is a local classifier-based segmentation method and has been
included in Adobe After Effects CS5 as the roto-brush tool,

and introduce the supervised method (i.e., STF [16]) as base-
line. For assessing the significance for updating model during
propagation, we also present the results by disabling the model
update over image sequences. Similar to the last experiment,
for the STF method, we randomly select half images from
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Fig. 10. Comparison of the proposed method (second row) with CVM [17] (third row), HLM [18] (fourth row), and RotoBrush [48] (fifth row). The
ground-truth annotations are shown in the top row. (a) 8th, 15th, and 23rd slices of the CT volumetric images. (b) 238th, 242nd, and 249th frames of the US
image sequence.

(a) (b)

Fig. 11. Segmentation accuracy with the propagation procedure over the
image sequences. We place scribbles on the first slice and automatically prop-
agate segmentation over the rest of the slices. The left figure shows the result
on SYSU-CT data set, while the right on SYSU-US data set. The horizon-
tal axis represents the index of image slice and the vertical axis represents
the average segmentation accuracy. Ours+ denotes the result generated by
making the model adapted, while ours− denotes the result with fixed model
parameters.

each image sequence for training and the other half for test-
ing, and repeat this procedure ten times to calculate the average
segmentation accuracy.

We execute this experiment on SYSU-CT and SYSU-US.
As Table II reports, our framework (ours+) achieves the
segmentation accuracy of 85.6% on SYSU-CT and 65.7%
on SYSU-US, outperforming other methods. In the case
of turning off the model updating during propagation,

Fig. 12. Example of segmentation refinement by stepwise user interactions.
The initialization segmentation is shown in the left image. The center image
shows that one background scribble B1 is added to correct the wrongly seg-
mented tumor area. The right image shows that one foreground scribble F1
is added to extract a tumor area that is missed in previous steps.

the segmentation accuracies (ours−) seriously decrease on the
both data sets, (e.g., around 28% and 30%, less than the results
by ours+, respectively). In Fig. 11, we further present the
quantitative comparisons for segmenting image sequences with
or without model updating. For each sequence, we propagate
the segmentation from the first slice and show how the seg-
mentation accuracy decreases over the sequence. We observe
that the model updating is quite necessary to maintain the
accurate segmentations in the sequences, as the tumors and
tissues often distinctly vary in appearance and shape over
image sequences. In clinical application, we usually achieve
satisfactory results by allowing refinement every 10–20 slices.

Figs. 7–9 present some results on the CT, US, and MRI
data, respectively. With very coarse scribbles, our system is
able to generate accurate results in the context of drastic tumor
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TABLE II
AVERAGE SEGMENTATION ACCURACY ON SYSU-CT AND SYSU-US.

THE BOLD FONTS INDICATE THE BEST PERFORMANCE

Fig. 13. Illustration of the robustness of the proposed system to different styles of user-assisted scribbles. The first column is the ground-truth segmentation.
The remaining columns are segmentations obtained by placing scribbles in four different styles.

changes, e.g., Figs. 7(a) and 8(a). For tumors similar to healthy
tissues, our framework can also conduct satisfactory results,
e.g., Fig. 8(b). Several segmentation results in comparison with
CVM [17], HLM [18], and RotoBrush [48] are exhibited in
Fig. 10, and those generated by our approach clearly achieve
better accuracies. These results further demonstrate the effec-
tiveness of our model, while lack of the boundary models in
CVM and RotoBrush can lead to inaccurate tumor boundary
localization in the case of cluttered surrounding background.
HLM relies on the assumption that the regions to be segmented
exhibit homogeneous intrinsically, which may not be always
satisfactory such as in the presented examples.

C. Experiment III: User Study

In the system, the radiologists are allowed to correct the
segmented areas at any slice by adding or removing new
scribbles in a stepwise manner. One example is illustrated in
Fig. 12, where we first remove a wrongly segmented tumor
area and extract one missing tumor area with two steps of
adding scribbles.

We also show that our system is very robust to diverse user
scribbles with the same intention. As shown in Fig. 13, scribbles
are placed in four different patterns, but all achieve visually
very similar segmentation results. These results show that our
collaborative model less relies on the user scribbles, and thus
makes the system more applicable for different radiologists.

V. CONCLUSION

In this paper, we study a general inference framework
for extracting liver tumors from medical image sequences.

A collaborative formulation of tumor segmentation is dis-
cussed by jointly integrating region and boundary information.
The inference algorithm iterates to solve single slice segmenta-
tion and propagate the segmentation to consecutive slices. The
implementation and system details are presented as well. The
experiments are carried out on several very challenging liver
tumor data sets with different imaging technologies (e.g., CT,
MRI, and US), and our system outperforms the existing meth-
ods. Even though our approach was developed for liver tumor
segmentation, it is suitable for other types of tissue where we
can extract distinct region or boundary features.

There are several directions in which we intend to extend
this paper. The first is to incorporate knowledge priors (e.g.,
tumor shapes, locations, and other attributes) into our frame-
work, thereby improving the segmentation performance while
further reducing user interactions. Second, we could utilize
deep learning techniques (e.g., convolutional neural nets [49])
to replace the handcraft features. Another potential extension is
to generalize our system in the context of intelligent diagnosis.
Specifically, we could develop pattern classification techniques
to recognize tumor categories or types, e.g., benign or malign,
together with the segmentation process.
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