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Abstract

Deep neural networks have advanced many computer
vision tasks, because of their compelling capacities to learn
from large amount of labeled data. However, their per-
formances are not fully exploited in semantic image seg-
mentation as the scale of training set is limited, where per-
pixel labelmaps are expensive to obtain. To reduce labeling
efforts, a natural solution is to collect additional images
from Internet that are associated with image-level tags.
Unlike existing works that treated labelmaps and tags as
independent supervisions, we present a novel learning set-
ting, namely dual image segmentation (DIS), which consists
of two complementary learning problems that are jointly
solved. One predicts labelmaps and tags from images,
and the other reconstructs the images using the predicted
labelmaps. DIS has three appealing properties. 1) Giv-
en an image with tags only, its labelmap can be inferred
by leveraging the images and tags as constraints. The
estimated labelmaps that capture accurate object classes
and boundaries are used as ground truths in training to
boost performance. 2) DIS is able to clean tags that have
noises. 3) DIS significantly reduces the number of per-
pixel annotations in training, while still achieves state-of-
the-art performance. Extensive experiments demonstrate
the effectiveness of DIS, which outperforms an existing best-
performing baseline by 12.6% on Pascal VOC 2012 test set,
without any post-processing such as CRF/MRF smoothing.

1. Introduction

Deep convolutional networks (CNNs) have improved
performances of many computer vision tasks, because they
have compelling modeling complexity to learn from large
number of supervised data. However, their capabilities are
not fully explored in the task of semantic image segmenta-
tion, which is to assign a semantic label such as ‘person’,
‘table’, and ‘cat’ to each pixel in an image. This is due to
the training set of semantic image segmentation is limited,
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Figure 1: Comparisons of recent semi-supervised learning set-
tings. I , L, and T denote an image, a per-pixel labelmap, and a
vector of image-level tags respectively, where the labelmap L can
be missing in training. (a) treats L as missing label in multitask
learning, where its gradient is not computed in back-propagation
(BP). (b) regards L as latent variable that can be inferred by tags
and used as ground truth in BP. We propose (c), which infers the
missing label L not only by recovering clean tags T̂ , but also
by reconstructing the image to capture accurate object shape and
boundary.

where the per-pixel labelmaps are difficult and expensive to
obtain.

To reduce efforts of data annotations, a usual way is to
automatically collect images from Internet, which are asso-
ciated with image-level tags. As a result, the entire dataset
contains two parts, including a small number of fully anno-
tated images with per-pixel labelmaps and a large number of
weakly annotated images with image-level tags. Learning
from this dataset follows a semi-supervised scenario. To
disclose the differences among existing works, we introduce
necessary notations that will be used throughout this paper.
Let I be an image and L, T represent its labelmap and
tags. Two superscripts w and f are utilized to distinguish
the weakly and fully annotated images respectively. For
example, Iw represents a weakly labeled image that only
has tags Tw, but its labelmap Lw is missing. If indicates
an image that is fully annotated with both labelmap Lf and
tags T f .

Let θ be a set of parameters of a CNN. The objective
function of semi-supervised segmentation is often formu-
lated as maximizing a log-likelihood with respect to θ.
We have θ∗ = argmaxθ log p(L

f , Lw, T f , Tw|If , Iw; θ),
where the probability measures the similarity between the
ground truths and the predicted labelmaps and tags pro-
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duced by the CNN.
Previous works can be divided into two categories ac-

cording to different factorizations of the above probabili-
ty. In the first category, methods [13, 23, 28] employed
multitask learning with missing labels, where the labelmap
Lw is missing and treated as an unobserved variable.
In this case, the likelihood is factorized into two terms,
p(Lf , T f , Tw|If , Iw) ∝ p(Lf |If ) · p(T f , Tw|If , Iw),
which correspond to two tasks as shown in Fig.1 (a). One
learns to predict labelmaps Lf using the fully annotated
images If , and the other is trained to classify tags, T f

and Tw, using both fully and weakly annotated images If

and Iw. These two tasks are jointly optimized in a single
CNN. More specific, back-propagation of the first task is
not performed when a weakly labeled image is presented.
In general, these approaches learn shared representation to
improve segmentation accuracy by directly combining data
with strong and weak supervisions.

Unlike the above approaches, Lw is treated as a la-
tent variable in the second category [21, 4, 15]. In
this case, the likelihood function can be represented by
p(Lf , Lw, T f , Tw|If , Iw) ∝ p(Lf |If ) · p(Lw|Iw, Tw) ·
p(T f , Tw|If , Iw), where the first and the third terms are
identical as above. The second term estimates the missing
labelmap given an image and its tags. In other words, when
a weakly labeled image Iw is presented, the CNN produces
a labelmap Lw, as its parameters are learned to do so from
the fully annotated images. The predicted labelmap is then
refined with respect to the tags Tw, as shown in Fig.1 (b).
We take Pascal VOC12 [6] as an example, which has 20
object classes and 1 class of background. A labelmap Lw is
of n×m× 21, where n,m denote width and height of the
response map, and each entry in Lw indicates the possibility
of the presence of a class on a pixel. For instance, when Lw

is confused with ‘cat’ and ‘dog’ by assigning them similar
probabilities, and Tw tells that only ‘dog’ is appeared in
the image but not ‘cat’, we can refine Lw by decreasing the
probability of ‘cat’. An implementation to achieve this is
by convolving the n×m× 21 labelmap with a 1× 1× 21
kernel (a vector of tags). After refinement, Lw is used
as ground truth in back-propagation, which significantly
boosts performance as demonstrated in [21].

However, the recent approaches still have two weakness-
es. (i) The tags Tw helps refine the misclassified pixels of
Lw, but not the object boundary and shape, because these
information are not captured in image-level tags. (ii) Tw

may have noises when the images are automatically down-
loaded from the Internet. These noisy tags will hamper the
learning procedure.

To resolve the above issues, this work presents Dual
Image Segmentation (DIS), which is inspired by the dual
learning in machine translation [9], where exists a small
number of bilingual sentence pairs, such as a pair of ‘have

a good day’ in English (En) and ‘bonne journée’ in French
(Fr), but there exists unlimited monolingual sentences in En
and Fr that are not labeled as pairs on the Internet. [9]
leveraged the unlabeled data to improve performance of
machine translation from En to Fr, denoted as En→Fr. This
is achieved by designing two translation models, including
a model of En→Fr and a reverse model of Fr→En.
In particular, when a pair of bilingual sentences is pre-
sented, both models can be updated in a fully-supervised
scenario. However, when a monolingual En sentence is p-
resented, a Fr sentence is estimated by first applying En→Fr
and then Fr→En′. If the input sentence En and the repro-
duced sentence En′ are close, the estimated Fr sentence is
likely to be a good translation of En. Thus, they can be
used as a bilingual pair in training. Training models on
these large number of synthesized pairs, performance can
be greatly improved as shown in [9]. In general, the above
two models behave as a loop to estimate the missing Fr
sentences.

In this work, DIS extends [9] to four tuples, I , L, T ,
and T̂ , where T̂ denotes the clean tags that are recovered
from the noisy tags T . As shown in Fig.1 (c), DIS has three
“translation” models as a loop, including 1) I → (L, T̂ ), 2)
T̂ → (L, T ), and 3) L→ I , where the first one predicts the
labelmap L and clean tags T̂ given an image I , the second
one refines L according to T̂ , and the last one reconstructs
I using the refined labelmap L.

Intuitively, DIS treats both Lw and T̂w as latent vari-
ables, other than only one latent variable Lw as in Fig.1
(b). For example, when a weakly labeled image Iw is
presented, we can estimate Lw and T̂w by performing
Iw → (Lw, T̂w), T̂w → (Lw, Tw), and Lw → Iw′.
As a result, when Iw and Iw′ are close, Lw and T̂w can
be used as a strong and a weak supervisions for training,
because they not only capture precise object classes that
present in image, but also capture accurate object boundary
and shape in order to reconstruct the image. Leveraging
these synthesized ground truths in training, DIS is able to
substantially reduce the number of fully annotated images,
while still attaining state-of-the-art performance.

Different from Fig.1 (a,b), DIS iteratively optimizes two
learning problems as visualized in (c). Its objective function
contains two parts, log p(Lf , Lw, T f , Tw, T̂w|If , Iw) +
log p(If , Iw|Lf , Lw), where the first part is for segmenta-
tion and the second part is for image reconstruction. Com-
pared to (b), the first part has one additional variable T̂w and
is factorized as p(Lf , Lw, T f , Tw, T̂w|If , Iw)∝ p(Lf |If )
· p(Lw|Iw, T̂w) · p(T f , Tw|If , T̂w) · p(T̂w|Iw). The first
three terms are similar to those in (b), whilst the fourth term
estimates the clean tags. The second part of the objective
function reconstructs images using the predicted labelmaps.

In general, we propose a novel framework for seman-
tic image segmentation, namely dual image segmentation



Table 1: The numbers of training samples of recent weakly-,
semi-, and fully-supervised segmentation methods are compared
from top to bottom. We take VOC12 as an example to compare
their experimental settings. ‘Pixel’, ‘Tag’, ‘Bbox’, and ‘Scrib-
ble’ indicate different types of supervisions, including per-pixel
labelmaps, image-level tags, bounding boxes, and scribbles. ‘V’,
‘VA’, ‘I’, ’V7’, and ‘C’ represent images are come from different
data sources, where V=VOC12 [6], VA=VOC12+VOC Augment
[8], I=ImageNet [25], V7=VOC07 [5], and C=COCO [16]. All
these data are manually labeled, but not the data from ‘W’, which
are collected from the Internet.

Pixel Tag Bbox Scribble
MIL-FCN [23] 10k,VA
MIL-sppxl [24] 760k, I
CCNN [22] 10k,VA
WSSL (semi) [21] 15k,VA+C 118k, C
BoxSup [4] 10k,VA 133k, C
ScribbleSup [13] 11k,VA 10k,V7
DIS (ours) 2.9k,V 40k,W+10k,VA
WSSL (full) [21] 133k, C
DeepLabv2-CRF [3] 12k,VA
CentraleSupelec [2] 12k,VA
DPN [17] 12k,VA
RNN [30] 12k,VA

(DIS), which significantly reduces number of fully anno-
tated images in training, while still achieves state-of-the-art
performance. For example, we demonstrate the effective-
ness of DIS on Pascal VOC 2012 (VOC12) test set, out-
performing a best-performing baseline by more than 12%.
When adapting to VOC12, DIS reduces the number of fully
annotated images by more than 75%.

1.1. Related Works

Semantic Image Segmentation. We review recent
advanced segmentation methods by dividing them into three
groups, including weakly-, semi-, and fully-supervised
methods, which are listed in Table 1 from top to bottom re-
spectively. We take VOC12 as an example to compare their
experimental settings. As an approach may have multiple
settings, we choose the best-performing one for each ap-
proach. We can see that DIS reduces number of labelmaps
by 76% and 97% compared to the fully-supervised methods
[3, 2, 17, 30, 18] and [21] respectively. In comparison with
the weakly- and semi-supervised methods, the number of
images of DIS is also smaller than those of many previous
works [24, 21, 4]. Unlike existing works that employed
manually labeled data, the image-level tags in DIS are
mainly collected from the Internet without manual cleaning
and refinement.

Image/Labelmap Generation. Transforming between
a labelmap and an image has been explored in the literature
[11, 1, 29]. Table 2 compares these models with DIS,
where [11] aimed at generating realistic images given la-
belmaps, whilst [1, 29] produced labelmaps using encoder-

Table 2: Comparisons of different image/labelmap generation
models, in terms of ‘network input’, ‘network output’, and ‘latent
representation’. In general, [11] generated realistic images given
labelmaps as inputs, while [1, 29] output labelmaps. Different
from DIS, all these methods learned latent feature coding to im-
prove quality of image/labelmap generation in a fully-supervised
scenario, which requires plenty of fully annotated images.

Network Input Network Output Latent Representation
GAN [11] labelmap image coding
AE [1] image labelmap coding
VAE [29] coding + image labelmap coding
DIS (ours) image labelmap + image labelmap + clean tags

Child is playing with sheep 
in the field.

A cute young puppy licking 
the face of a pretty young 
girl as she is laughing.  (cat)

Young family watching TV 
together at home.  (bottle, 
sofa)

Man waiting for loading a pc 
application.  (monitor, cat, 
table)

Birds and a fishing boat 
in Pier.  (bicycle)

Man having breakfast and a 
cat looking into his plate. 
(table, chair)

Figure 2: Some pairs of images and sentences in IDW. Different
tags are highlighted using different colors, where words in ‘blue’,
‘green’, ‘red’, and ‘orange’ respectively indicate synonyms of tags
of VOC12, tags not presented in images, tags of VOC12, and tags
appeared in images but missed in sentences. Best viewed in color.

decoder (AE) and variational autoencoder (VAE). All these
approaches treated the feature coding as latent representa-
tion to improve the quality of image or labelmap generation
in a fully-supervised scenario, where large number of fully
annotated images is required. In contrast, DIS infers the
latent labelmaps and clean tags to improve segmentation
accuracy in a semi-supervised scenario.

2. Our Approach

Weak Supervisions. To improve segmentation accura-
cy using weak supervisions, we empoly the Image Descrip-
tion in the Wild (IDW) dataset [26], which has 40 thousand
images selected from the Internet. These images are associ-
ated with image-level tags, object interactions, and image
descriptions. In this work, we only leverage the image-
level tags, but not object interactions. To improve image
segmentation using object interactions and descriptions, we
refer the readers to [26]. Some images and descriptions of
IDW are given in Fig.2.
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Figure 3: Pipeline of DIS, which contains four key components, including a ResNet101 for feature extraction, and three subnets denoted
as ‘subnet-1, -2, -3’ for labelmap prediction, image reconstruction, and tag classification respectively. Best viewed in color.

An appealing property of IDW is that each image can
be associated with multiple tags by parsing the sentences.
A deficiency is that these sentences are not sufficiently
accurate, where important tags are missing or not presented
in images as highlighted in orange and green in Fig.2. For
instance, as shown in the top-right image, ‘birds’ are too
small to be observed in image and a ‘bicycle’ is missing
in the sentence. Leveraging them as supervisions may
hinder the training procedure. Nevertheless, DIS is able to
recover the missing labelmaps and clean tags, to boost the
segmentation performance.

2.1. Network Overview

Fig.3 illustrates the diagram of DIS, which has four
important components, including a building block of
ResNet101 for feature extraction, and three subnets marked
as ‘1’, ‘2’, and ‘3’ for labelmap prediction (blue), image
reconstruction (green), and tag classification (pink), respec-
tively. The convolutional feature maps in these subnets
are distinguished by using u, z, and v. For example, u1
indicates the first feature map of subnet-1.

Baseline. To evaluate the effectiveness of DIS, we use
the ResNet101 network architecture as baseline model. As
shown in Fig.3, given an image I , ResNet101 produces a
feature map of 2048×45×45 and a feature vector of 2048×
1, denoted as u1 and v1 respectively.

Forward Propagation. Fig.3 illustrates the forward
flows of the three subnets by using solid arrows in gray,
which are explained in detail below. Subnet-1 contains an
elementwise-sum layer and a convolutional layer. In partic-
ular, the elementwise-sum layer takes u1 and v1 as inputs
and produces u2 = u1 ⊕ up(v1), where up(·) represents
an upsampling operation that concatenates the 2048 × 1
feature vector, v1, into a feature map of 2048 × 45 × 45,
and ⊕ denotes entry-wise sum between u1 and up(v1). In
this case, the pixel-level features u1 can borrow information
from the image-level features v1 to improve segmentation.
After that, a convolutional layer applies a 2048×3×3×21

kernel on u2 to produce u3, which represents the response
maps of 21 categories of VOC12. Each entry of u3 indicates
the probability of a category appeared at a specific location.

Subnet-2 leverages u3 as input and reconstructs the im-
age denoted as z3, by stacking three convolutional layers.
Specifically, the sizes of the kernels from u3 to z3 are
21× 5× 5× 21, 21× 3× 3× 16, and 16× 3× 3× 3.

Subnet-3 has an elementwise-sum layer and a convolu-
tional layer similarly to subnet-1. In particular, a feature
vector v2 of length 2048 is produced by fusing v1 and u1,
such that v2 = avgpool(u1)⊕ v1, where avgpool indicates
average pooling. In this case, the image-level features
are improved by the pixel-level features to facilitate tag
classification. This is extremely useful when the tags have
noises. After that, v2 is projected into a response vector v3
of 21 × 1, where each entry indicates the possibility of the
presence of a category in an image.

Inference in Test. We introduce the testing procedure
of DIS first and then training is discussed in Sec.3. Different
from the ordinary ResNet101 [3], DIS enables iterative
inference in the testing stage to gradually improve accuracy
of the predicted labelmap. This is an important contribution
of DIS. In general, it is achieved by minimizing the image
reconstruction loss (in subnet-2) with respect to the pixel-
and image-level features u1 and v1, and keeping the learned
network parameters fixed.

More specific, given an image I in test, the objec-
tive function of inference can be written as u∗1, v

∗
1 =

argminu1,v1 ‖z3 − I‖22. Let t be the iteration of opti-
mization. For example, ut1 denotes a variable at the t-
th iteration. As shown in Fig.3, when t = 0, u01 and
v01 are the features extracted by ResNet101 from the input
image I at the beginning of inference. When t > 0, these
features are forwarded to zt3, which can be considered as
a function taken ut1, v

t
1 as inputs. Therefore, by freezing

all the network parameters, we can refine these features by
treating ut1, v

t
1 as variables and back-propagating gradients

of the above objective function to them. After t iterations,



Figure 4: Inference in test. Two examples are selected from
IDW. From left to right, three images represent an input image, the
labelmaps when t = 0 and t = 30 respectively. ‘pink’, ‘blue’, and
‘green’ indicate regions of ‘person’, ‘motorbike’, and ‘bicycle’.
Best viewed in color and 200% zoom.

u∗1 and v∗1 represent the refined features by reconstructing
the image to capture accurate object boundary.
Fig.4 compares the results when t = 0 and 30. When t = 0,
the results are the outputs of ResNet101 without inference.
These examples show that inference is capable of produc-
ing more accurate results when t increases, even though it
is difficult to distinguish the appearances of ‘person’ and
‘motorbike’ in the first example. Also, the noisy predictions
(‘motorbike’) can be removed from the second one.

Final Prediction. After inference, we propagate u∗1, v
∗
1

forward to obtain the predicted labelmap u3 and tags v3.
The final labelmap prediction is attained by combining
them, where v3 is treated as a convolutional kernel and
convolved on u3. We have u3 = conv(u3, v3), as shown
in the blue dashed arrow of Fig.3.

3. Training Algorithms

DIS is trained with two stages. The first stage pretrains
the network using the fully annotated images only. In the
second stage, the network is finetuned using both the fully
and weakly annotated images.

Fully-supervised Stage. In the first stage, given the
strongly labeled data {If , Lf , T f}, DIS is pretrained in a
fully-supervised manner with three loss functions, which
are indicated by the solid red arrows at the end of the three
subnets as shown in Fig.3, including a softmax loss for la-
belmap prediction, Lmap(u3, L

f ), an euclidian loss for im-
age reconstruction, Limg(z3, I

f ), and a softmax loss for tag
classification, Ltag(v3, T

f ). For instance, Lmap(u3, L
f )

denotes the loss function of labelmap prediction, where
u3 and Lf are the predicted and ground-truth labelmaps
respectively. More specific, the four components of DIS
is progressively trained in three steps. First, we train
three components, including ResNet101, subnet-1, and -3
to predict labelmaps and tags. Second, subnet-2 is learned
to reconstruct images by freezing the parameters of the
above components. Finally, all four components are jointly
updated. The rationale behind the above multi-step training
scheme is that it encourages a smooth course of multitask
minimization. Similar idea has been demonstrated in many
previous works [12, 10].

3.1. Semi-supervised Stage

In the second stage, DIS is finetuned by two sources
of data, the weakly and fully annotated data, to im-
prove segmentation performance. They are represented by
{I, L, T}, where I = {If , Iw}, L = {Lf , Lw}, and
T = {T f , Tw, T̂w}. The missing labelmap Lw and clean
tags T̂w are inferred as ground truths for training. This
is another main contribution of DIS. We first explain the
objective function and then discuss the training steps.

Let θ be a set of parameters of the entire network. Then
the learning problem can be formulated as

argmin
θ

{
Lmap(u3, L) + Limg(z3, I) + Ltag(v3, T )

}
+arg min

u1,v1

{
Limg(z3, I

w) + Ltag(v3, T
w)

}
, (1)

which contains two parts that are optimized iteratively. The
first part is identical to the fully-supervised stage above,
where each input image I , regardless of which data source
it comes from, is trained to update θ by minimizing the loss-
es between its predictions {u3, z3, v3} and ground truths
{L, I, T}. However, for an weakly annotated image Iw, its
labelmap Lw and clean tags T̂w are unobserved. Thus, they
are estimated by minimizing the second part of Eqn.(1).

In general, given an image If with strong supervisions,
DIS can be simply finetuned by optimizing the first part of
Eqn.(1). Otherwise, when Iw is presented, DIS is finetuned
by iteratively minimizing both parts of Eqn.(1) following
two steps, (i) inferring Lw and T̂w by freezing θ and updat-
ing u1 and v1, and (ii) updating the network parameters θ
by using the inferred Lw and T̂w as ground truths.

Inference in Training. We introduce the first step
in detail. The inference in training is similar to that in
test. The main difference is that u1 and v1 are updated by
minimizing the losses of both image reconstruction and tag
classification, other than only the image reconstruction as
we did in test. In this case, u1 and v1 receive gradients from
two paths as shown in Fig.3. One is from v3 and the other
is from u3 and z3. As the subnets have been pretrained
on strongly annotated data, iteratively updating u1 and v1
makes them captured the accurate spatial representation and
clean tags, because noises in them are removed in order to
produce the labelmaps and reconstruct the images.

Let t be the iteration of optimization. Then u01 and v01
are the outputs of ResNet101 when t = 0 at the beginning
of inference. For t > 0, we update ut1, v

t
1 by propagating

the gradients of the two loss functions back to them, while
keeping the network parameters fixed. After t iterations,
we obtain u∗1 and v∗1 , which are forwarded to u3 and v3.
The final prediction of u3 is refined by v3 using convolution
following the inference in test, as shown in blue dashed
arrows of Fig.3. Then the ground truth labelmap and clean
tags can be achieved by applying the softmax function on



u3 and v3.
Implementation Details. For a fair comparison, the

parameters of ResNet101 are initialized the same as [3]
by training on ImageNet and COCO. When adapting to
VOC12, our baseline model is trained on 2.9k fully su-
pervised data, including images and their labelmaps. The
weakly-supervised data with image-level tags are chosen
from IDW and VOC augment datasets. The parameters of
three subnets are initialized by sampling from a normal dis-
tribution. The entire network is trained by using stochastic
gradient descent with momentum.

An Interesting Finding. The number of iteration t in
inference of training and test can be different. In general,
more iterations are performed in training, less iterations are
required in test, and vice versa. In other words, computation
time in test can be simply reduced by increasing inference
iterations in training. On the contrary, training time can
be reduced by growing number of iterations in test. We
find that both strategies provide remarkable segmentation
accuracies. More details are presented in experiments.

4. Experiments
We evaluate the effectiveness of DIS in three aspects.

In sec.4.1, DIS is compared with existing segmentation
methods on VOC12 test set [6]. When adapting to VOC12,
DIS is trained on 2.9k pixel-level annotations and 50k
image-level tags. In particular, 40k tags are from IDW
and the other 10k tags are from VOC augment dataset. In
contrast, previous works typically combined VOC12 and
VOC augment dataset [8], resulting in 12k pixel-level anno-
tations. For initialization, existing methods initialized their
networks by pretraining on ImageNet [25] and COCO [16],
which typically brings 2∼3% performance gain. For a fair
comparisons, we mainly report and compare to results that
were pretrained on the above two datasets.

In Sec.4.2, we study the impact of the number of itera-
tions in inference, for both the training and testing stages.
In Sec.4.3, we examine the generalization of DIS on a test
set of IDW.

4.1. Comparisons between Previous Works

The segmentation accuracy of DIS is compared to those
of the state-of-the-art methods on VOC12 test set. We adopt
11 representative fully-supervised methods, including Seg-
Net [1], FCN [19], Zoom-out [20], WSSL (full) [21], RNN
[30], Piecewise [14], DPN [17], DeepLabv2 [3], LRR-4x-
Res [7], HP [27], and CentraleSupelec [2]. We also employ
two best-performing semi-supervised approaches, WSSL
(semi) [21] and BoxSup [4].

Results are reported in the upper three blocks of Table 3,
where the superscript † indicates methods whose baseline
models are pretrained on both ImageNet and COCO. We
can see that the recent fully-supervised methods generally

achieved better results than those of the semi-supervised
methods, such as WSSL (semi) and BoxSup. However,
when training WSSL on additional images from IDW, it
obtains performance of 81.9% that outperforms all previous
works. A new record of 86.8% is achieved by DIS, which
significantly outperforms the baseline and WSSL+IDW by
12.6% and 4.9% respectively, and reduces the number of
fully annotated images by 75% and 97% compared to them.

Properties of several representative works are compared
in Table 4, in terms of number of network parameters, train-
ing on manually labeled data, CRF post-processing, mul-
tiscale testing, and runtime per image on a Titan-X GPU.
We have four main observations. First, fusing multiscale
features to improve performance is a common practice,
which typically leads to 1∼2% gain [17, 4]. Second, all
approaches except DIS are trained on manually labeled da-
ta, whilst weakly-supervised data for DIS are automatically
collected from Web. Third, methods that have smaller num-
bers of parameters execute faster, but sometimes sacrifice
performance such as [1]. Fourth, most of computation time
in existing methods such as [3, 17] is occupied by CRF post-
processing. Note that the runtime of CRF is not counted in
Table 4.

4.2. Ablation Study

We study the effect of using different iterations in in-
ference, as shown at the bottom of Table 3, where ttr
and tts represent numbers of inference in training and test
respectively. We evaluate 10 different setups. In the first
setup when ttr = 0, DIS degenerates to the recent semi-
supervised learning scheme without refining labelmaps and
tags. We can see that it outperforms the baseline by 5.8%.
For the remaining setups when ttr = 5, 10, and 30, DIS
attains more than 5% gain compared to the first one.

We have several important observations. First, when
tts = 0, setup id ‘2’, ‘5’, and ‘8’ outperform ‘1’ and the
baseline by more than 5% and 10% respectively, demon-
strating the importance of inference in training. Second,
when the numbers of ttr are the same, increasing tts im-
proves performances. For example, the seventh setup out-
performs the fifth one by 0.9%, showing the usefulness of
inference in test. Third, when the numbers of tts are the
same, larger ttr obtains better performances. For instance,
setup id ‘9’ has 1.1% improvement over ‘3’. Finally, the
best performance of 86.8% is achieved when ttr = 30 and
tts = 30.

Fig.5 visualizes some segmentation results. As our pur-
pose is not to generate high quality images, DIS is super-
vised by the downsampled images of 45×45 in order to save
computations. These images are able to catch sufficient
details of object shapes and boundaries as shown in the
second column. In general, the predicted labelmaps become
more accurate when more inferences are performed. Note



Table 3: Comparisons on VOC12 test set. Best performance of each category is highlighted in bold.

areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU
SegNet [1] 73.6 37.6 62.0 46.8 58.6 79.1 70.1 65.4 23.6 60.4 45.6 61.8 63.5 75.3 74.9 42.6 63.7 42.5 67.8 52.7 59.9
FCN [19] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2
Zoom-out [20] 85.6 37.3 83.2 62.5 66.0 85.1 80.7 84.9 27.2 73.2 57.5 78.1 79.2 81.1 77.1 53.6 74.0 49.2 71.7 63.3 69.6
WSSL (full)† [21] 89.2 46.7 88.5 63.5 68.4 87.0 81.2 86.3 32.6 80.7 62.4 81.0 81.3 84.3 82.1 56.2 84.6 58.3 76.2 67.2 73.9
RNN† [30] 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1 74.7
Piecewise† [14] 92.3 38.8 82.9 66.1 75.1 92.4 83.1 88.6 41.8 85.9 62.8 86.7 88.4 84.0 85.4 67.4 88.8 61.9 81.9 71.7 77.2
DPN† [17] 89.0 61.6 87.7 66.8 74.7 91.2 84.3 87.6 36.5 86.3 66.1 84.4 87.8 85.6 85.4 63.6 87.3 61.3 79.4 66.4 77.5
DeepLabv2† [3] 92.6 60.4 91.6 63.4 76.3 95.0 88.4 92.6 32.7 88.5 67.6 89.6 92.1 87.0 87.4 63.3 88.3 60.0 86.8 74.5 79.7
LRR-4x-Res† [7] 92.4 45.1 94.6 65.2 75.8 95.1 89.1 92.3 39.0 85.7 70.4 88.6 89.4 88.6 86.6 65.8 86.2 57.4 85.7 77.3 79.3
HP† [27] 91.9 48.1 93.4 69.3 75.5 94.2 87.5 92.8 36.7 86.9 65.2 89.1 90.2 86.5 87.2 64.6 90.1 59.7 85.5 72.7 79.1
CentraleSupelec† [2] 92.9 61.2 91.0 66.3 77.7 95.3 88.9 92.4 33.8 88.4 69.1 89.8 92.9 87.7 87.5 62.6 89.9 59.2 87.1 74.2 80.2
WSSL (semi)† [21] 80.4 41.6 84.6 59.0 64.7 84.6 79.6 83.5 26.3 71.2 52.9 78.3 72.3 83.3 79.1 51.7 82.1 42.5 75.0 63.4 69.0
BoxSup† [4] 89.8 38.0 89.2 68.9 68.0 89.6 83.0 87.7 34.4 83.6 67.1 81.5 83.7 85.2 83.5 58.6 84.9 55.8 81.2 70.7 75.2
WSSL†+IDW 94.7 62.3 93.3 65.5 75.8 94.6 89.7 93.9 38.6 93.8 72.2 91.4 95.5 89.0 88.4 66.0 94.5 60.4 91.3 74.1 81.9
ResNet101† [3] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 74.2
DIS† (ours) 94.4 73.2 93.4 79.5 84.5 95.3 89.4 93.4 54.1 94.6 79.1 93.1 95.4 91.6 89.2 77.6 93.5 79.2 93.9 80.7 86.8

1. ttr = 0 93.3 58.6 90.9 67.9 76.0 94.2 88.6 91.1 35.8 89.7 70.5 87.1 92.2 87.7 86.8 65.3 88.5 60.9 85.9 74.4 80.0
2. ttr = 5, tts = 0 93.1 68.2 92.2 73.9 82.1 94.7 87.9 92.9 47.4 93.2 77.0 90.7 92.2 91.1 87.8 75.5 91.9 75.5 92.6 79.8 84.6
3. ttr = 5, tts = 10 94.0 69.6 93.1 73.3 83.8 95.2 89.1 93.4 48.8 93.8 77.6 92.0 94.6 91.1 88.3 75.7 93.1 75.8 93.3 81.1 85.4
4. ttr = 5, tts = 30 93.9 70.7 93.1 77.6 83.4 95.2 89.2 93.3 53.3 94.1 78.7 92.8 94.8 91.4 88.8 77.0 93.0 78.6 93.7 81.1 86.2
5. ttr = 10, tts = 0 94.2 67.6 93.5 75.9 82.8 95.1 89.5 94.1 48.2 94.5 76.8 93.4 95.2 91.7 88.6 75.3 93.5 76.3 94.1 78.3 85.5
6. ttr = 10, tts = 10 94.2 67.9 93.6 74.8 84.3 95.7 89.1 93.3 52.4 94.9 77.9 92.1 95.2 90.5 88.2 76.9 93.7 78.7 93.1 80.3 85.9
7. ttr = 10, tts = 30 94.7 68.7 93.8 75.7 84.9 95.8 89.7 94.3 51.7 95.2 78.5 93.2 95.6 91.9 88.8 77.9 93.9 78.6 94.3 80.0 86.4
8. ttr = 30, tts = 0 93.6 69.6 93.8 76.1 84.4 95.6 89.6 94.4 49.7 95.0 78.1 93.5 96.0 92.2 89.0 77.5 93.8 78.6 93.9 80.9 86.3
9. ttr = 30, tts = 10 93.3 73.0 93.2 79.1 84.1 95.3 89.5 93.4 53.9 94.3 79.0 92.8 94.9 91.4 89.1 77.5 93.5 79.2 93.6 80.5 86.5
10. ttr = 30, tts = 30 94.4 73.2 93.4 79.5 84.5 95.3 89.4 93.4 54.1 94.6 79.1 93.1 95.4 91.6 89.2 77.6 93.5 79.2 93.9 80.7 86.8

that the original images are put in the first column for better
visualization.

In Table 3, we also see that the results of ‘ttr = 30, tts =
0’, ‘ttr = 5, tts = 30’, and ‘ttr = 10, tts = 30’ are compa-
rable, which are 86.3, 86.2, and 86.4 respectively. We find
that this is an useful feature of DIS. In particular, the first
one indicates we can reduce runtime in test by increasing
iterations of inference in training, when computational cost
is a priority. To the extreme, inference is not performed in
test when tts = 0, while still maintaining high performance.
The last two tell us when model deployment is urgent, we
can reduce iterations in training and increase those in test,
such as tts = 30.

Another interesting finding from Table 3 is that different
iterations in inference induces diversity among these mod-
els, as disclosed by the top performance of each class in
bold. In other words, accuracy can be further boosted by
ensembling models with different iterations in inference.

4.3. Weakly-supervised Segmentation

We examine the generalization of DIS on IDW test set,
which consists of one thousand manually labeled images.
This test set is challenging, because the number of object
categories per image is more than those in existing datasets,
i.e. 2.23 compared to 1.48 in VOC12 and 1.83 in COCO.
We evaluate 7 setups of DIS similar as above, and compare
them to the baseline ResNet101 and WSSL+IDW.

The results are reported in Table 5. In general, since only
image-level tags are available in training, the performances
in IDW test set are much lower than those in VOC12 test

Table 4: Comparisons of several representative fully- and semi-
supervised segmentation methods. ‘#params’, ‘manual’, ‘CRF’,
‘multi.’, and ‘speed (ms)’ indicate number of paramters, training
on manually labeled data, CRF post-processing, multiscale feature
fusion, and runtime per image in millisecond (exclude CRF).

#params manual CRF multi. speed (ms)
FCN [19] 134M

√
×

√
160

DPN [17] 134M
√ √ √

175
CentraleSupelec [2] 45M

√ √ √
140

SegNet [1] 16M
√

×
√

75
DeepLabv2 [3] 45M

√ √ √
140

WSSL [21] 134M
√ √ √

200
BoxSup [4] 134M

√ √ √
–

DIS (ours) 45.5M × ×
√

140

set. However, similar trends can be observed from these
two datasets, representing the effectiveness of DIS. It out-
performs the baseline and WSSL+IDW by 9.2% and 7.8%
respectively, when ttr = 30 and tts = 30.

5. Conclusion
This work presented a novel learning setting for semi-

supervised semantic image segmentation, namely dual im-
age segmentation (DIS). DIS is inspired by the dual learning
in machine translation [9], but has two uniqueness. First,
DIS extends two tuples of En and Fr translation in [9] to
multiple tuples in the task of semantic image segmentation,
by modeling a close loop of generation among images, per-
pixel labelmaps, and image-level tags. Second, different
“translation” models of DIS can be plugged into a single



supervision ttrൌ0 ttrൌ5,	ttsൌ0 ttrൌ10,	ttsൌ10 ttrൌ30,	ttsൌ30org.	image

Figure 5: Segmentation examples on VOC12 test set. The columns from left to right show the original images, downsampled images as
supervisions, results when ‘ttr = 0’, ‘ttr = 5, tts = 0’, ‘ttr = 10, tts = 10’, and ‘ttr = 30, tts = 30’ respectively. In general, the
predicted labelmaps produce better results to capture object classes and boundaries, when more inferences are performed. For example,
the regions of ‘sofa’, ‘plant’, and ‘cat’ are correctly identified in the bottom-right labelmap.

Table 5: Comparisons on IDW test set. Best performance of each category is highlighted in bold.

areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU
1. ttr = 0 48.0 39.7 64.3 23.4 43.2 57.6 55.8 60.8 27.9 61.3 43.6 69.2 74.5 59.2 75.8 31.8 52.4 29.1 30.5 62.6 51.6
2. ttr = 10, tts = 0 58.5 43.2 67.1 22.4 52.3 63.9 59.7 71.0 38.0 74.1 45.6 74.9 74.4 67.1 80.4 36.2 47.9 26.7 38.8 64.8 56.6
3. ttr = 10, tts = 10 63.7 47.0 72.5 23.7 51.5 66.4 58.4 70.3 35.5 80.0 47.9 73.1 71.4 67.7 82.1 33.2 55.1 31.2 33.0 66.8 58.0
4. ttr = 10, tts = 30 66.8 39.6 72.3 21.4 57.1 68.8 62.5 72.2 33.6 75.6 50.7 75.6 78.0 68.4 79.9 32.5 57.3 33.4 39.0 70.7 59.0
5. ttr = 30, tts = 0 62.7 44.4 72.5 26.8 54.3 65.7 60.7 71.8 38.3 62.6 48.2 75.4 74.7 68.4 80.5 34.4 49.2 26.1 39.1 68.9 57.5
6. ttr = 30, tts = 10 61.9 49.6 68.2 29.6 48.8 66.4 63.8 73.7 35.6 72.1 48.8 76.8 76.7 68.9 81.6 44.8 44.8 33.6 33.6 66.4 58.8
7. ttr = 30, tts = 30 61.7 47.0 68.6 31.9 54.2 72.5 66.5 71.3 39.1 66.0 54.1 78.9 80.6 69.2 84.7 43.0 44.9 32.4 40.2 59.1 59.8
ResNet101† 50.9 42.0 67.9 17.4 46.4 65.4 59.6 64.8 32.5 21.1 45.8 69.7 74.3 61.2 79.7 25.2 40.0 23.8 34.6 57.6 50.6
WSSL†+IDW 51.4 42.5 61.6 17.0 48.4 62.4 58.3 65.8 34.2 30.8 47.3 70.5 75.1 60.5 80.4 34.8 43.6 24.6 33.4 65.9 52.0

baseline network, which is trained end-to-end, unlike [9]
where two translation models are separated.

Different from existing semi-supervised segmentation
methods, where a missing labelmap is treated as an un-
observed variable, or as a latent variable but inferred only
based on the tags, DIS estimates the missing labelmaps
by not only satisfying the tags, but also reconstructing the
images. These two problems are iteratively solved, making
the inferred labelmaps captured the accurate object classes
that present in the images, as well as the accurate object
shapes and boundaries so as to generate the images. Ex-
tensive experiments demonstrated the effectiveness of DIS
on VOC12 and IDW test sets, where it establishes new
records of 86.8% and 59.8% respectively, outperforming the
baseline by 12.6% and 9.2% and reducing number of fully
annotated images by more than 75%.
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