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Abstract

Face hallucination is a domain-specific super-resolution

problem with the goal to generate high-resolution (HR)

faces from low-resolution (LR) input images. In contrast

to existing methods that often learn a single patch-to-patch

mapping from LR to HR images and are regardless of the

contextual interdependency between patches, we propose a

novel Attention-aware Face Hallucination (Attention-FH)

framework which resorts to deep reinforcement learning

for sequentially discovering attended patches and then per-

forming the facial part enhancement by fully exploiting the

global interdependency of the image. Specifically, in each

time step, the recurrent policy network is proposed to dy-

namically specify a new attended region by incorporating

what happened in the past. The state (i.e., face hallucina-

tion result for the whole image) can thus be exploited and

updated by the local enhancement network on the selected

region. The Attention-FH approach jointly learns the recur-

rent policy network and local enhancement network through

maximizing the long-term reward that reflects the hallucina-

tion performance over the whole image. Therefore, our pro-

posed Attention-FH is capable of adaptively personalizing

an optimal searching path for each face image according

to its own characteristic. Extensive experiments show our

approach significantly surpasses the state-of-the-arts on in-

the-wild faces with large pose and illumination variations.

1. Introduction

Face hallucination refers to generating a high-resolution

face image from a low-resolution input image, which is a

very fundamental problem in face analysis field and can

facilitate several face-related tasks such as face attribute

recognition [16], face alignment [34], face recognition [35]
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in the complex real-world scenarios in which the face im-

ages are often of very low quality.

Existing face hallucination methods [32, 31, 17, 23] usu-

ally focus on how to learn a discriminative patch-to-patch

mapping from LR images to HR images. Particularly, re-

cent great progresses are made by employing the advanced

Convolutional Neural Networks (CNNs) [36] and multiple

cascaded CNNs [37]. The face structure priors and spatial

configurations [15, 3] are often treated as external informa-

tion for enhancing faces / facial parts. However, the con-

textual dependencies among the facial parts are usually ig-

nored during the hallucination processing. According to the

studies of human perception process [19], humans start with

perceiving the whole images and successively explore a se-

quence of regions with the attention shifting mechanism,

rather than separately processing the local regions. This

finding enlightens us to explore a new pipeline of face hal-

lucination by sequentially searching for the attentional local

regions and considering their contextual dependency from a

global perspective.

Inspired by the recent successes of attention and re-

current models on a variety of computer vision tasks [22,

1, 6], we propose an Attention-aware face hallucination

(Attention-FH) framework that recurrently discovers facial

parts and enhance them by fully exploiting the global inter-

dependency of the image, as shown in Fig. 1. In particular,

accounting for the diverse characteristics of face images on

blurriness, pose, illumination and face appearance, we ex-

plore to search for an optimal accommodated enhancement

route for each face hallucination. And we resort to the deep

reinforcement learning (RL) method [21] to harness the

model learning since this technique has been demonstrated

its effectiveness on globally optimizing the sequential mod-

els without supervision for every step.

Specifically, our Attention-FH framework jointly opti-

mizes a recurrent policy network that learns the policies to

select a preferable facial part in each step and a local en-

hancement network for facial parts hallucination, through

considering the previous enhancement results of the whole

face. In this way, rich correlation cues among different

facial parts can be explicitly incorporated in the local en-
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Figure 1: Sequentially discovering and enhancing facial parts in our Attention-FH framework. At each time step, our frame-

work specifies an attended region based on the past hallucination results and enhances it by considering the global perspective

of the whole face. The red solid bounding boxes indicate the latest perceived patch in each step and the blue dashed bounding

boxes indicate all the previously enhanced regions. We adopt a global reward at the end of sequence to drive the framework

learning under Reinforcement Learning paradigm.

hancement process in each step. For example, the agent can

improve the enhancement of the mouth region by taking a

more clear version of the eye region into account, as Fig. 1

illustrates.

We define the global reward for reinforcement learn-

ing by the overall performance of the super-resolved face,

which drives the recurrent policy network optimization.

And the recurrent policy network is optimized following

the reinforcement learning (RL) procedure [26] that can be

treated as a Markov decision process (MDP) maximized

with a long-term global reward. In each time step, we

learn the policies to determine an optimal location of next

attended region by conditioning on the current enhanced

whole face and the history actions. One Long Short-Term

Memory (LSTM) layer is utilized for capturing the past in-

formation of the attended facial parts. And the history ac-

tions are also memorized to avoid the inference trapped in a

repetitive action cycle.

Given the selected facial part in each step, the local en-

hancement network performs the super-resolution opera-

tion. The loss of enhancement is defined based on the fa-

cial part hallucination quality. Notably, the supervision in-

formation from the enhancement of facial parts effectively

reduces unnecessary trials and errors during the reinforce-

ment optimization.

We compare the proposed Attention-FH approach with

other state-of-the-art face hallucination methods under both

constrained and unconstrained settings. Extensive experi-

ments have shown that our method substantially surpasses

all of them. Moreover, our framework can explicitly gener-

ate a sequence of attentional regions during the hallucina-

tion, which finely accord with human perception process.

2. Related Work

Face Hallucination and Image Super-Resolution.

Face hallucination problem is a special case of image super-

resolution, which requires more informative structure pri-

ors and suffers from more challenging blurring. Early tech-

niques made an assumption that the faces are in a controlled

setting with small variations. Wang et al. [25] implemented

the mapping between low-resolution and high-resolution

faces by an eigen transformation. Yang et al. [32] suggested

that the low-resolution and high-resolution faces have sim-

ilar sparse prior and the high-resolution faces can be ac-

curately recovered from the low-dimensional projections.

In particular, Yang et al. [31] replaced the patch-to-patch

mapping with mapping between specific facial components,

which incorporates priors on face. However, the matchings

between components are based on the landmark detection

results which are unavailable when the down-sampling fac-

tor is large. Recently, deep convolution neural network has

been successfully applied to face hallucination [37, 36] as

well as image super-resolution [13, 20]. Zhen et al. [2] ad-

vocated the use of network cascade for image SR with a lo-

cal auto-encoder architecture. Similar FCNs were also used

in [3], which formulated sparse-coding based SR method

into 3 layers convolution neural network. Zhou et al. [36]

addressed the importance of appearance invariant method,

and adopted fully-connected layer to perform face hallu-

cination. Ren et al. [20] suggested that the unevenly dis-

tributed pixels may have different influences. They used
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Shepard interpolation to efficiently achieve translation in-

variant interpolation(TVI).

Reinforcement Learning and Attention Networks.

Attention mechanism has been recently applied and has

benefited various tasks, such as object proposal[12], ob-

ject classification[18], relationship detection[27], image

captioning[30] and visual question answering[28]. Since

contextual information is important for computer vision

problems, most of these works attempted to attend multi-

ple regions by formulating their attention procedure as a

sequential decision problem. Reinforcement learning tech-

nique was introduced to optimize the sequential model with

delayed reward. This technique has been applied to face

detection[5] and object localization[1]. These methods

learned an agent that actively locates the target regions (ob-

jects) instead of exhaustively sliding sub-windows on im-

ages. For example, Goodrich et al. [5] defined 32 actions to

shift the focal point and reward the agent when finding the

goal. Caicedo et al. [1] defined an action set that contains

several transformations of the bounding box and rewarded

the agent if the bounding box is closer to the ground-truth

in each step. These two methods both learned an optimal

policy to locate the target through Q-learning.

3. Attention-Aware Face Hallucination

Given a face image Ilr with low-resolution, our

Attention-FH framework targets on its corresponding high-

resolution face image Ihr by learning a projection function

F :

Ihr = F (Ilr|θ), (1)

where θ denotes the function parameters. Our Attention-FH

proposes to sequentially locate and enhance the attended fa-

cial parts in each step, which can be formulated as a deep

reinforcement learning procedure. Our framework consists

of two networks: the recurrent policy network that dynam-

ically determines the specific facial part to be enhanced in

current step and the local enhancement network which is

further employed to enhance the selected facial part.

Specifically, the whole hallucination procedure of our

Attention-FH can be formulated as follows. Given the input

image It−1 at the t-th step, the agent of the recurrent policy

network selects one local facial part Î ltt−1 with the location

lt:
lt = fπ(st−1; θπ),

Î ltt−1 = g(lt, It−1),
(2)

where fπ represents the recurrent policy network, θπ is the

network parameters. st−1 is the encoded input state of the

recurrent policy network, which is constructed by the input

image It−1 and the encoded history action ht−1. g denotes

a cropping operation which crops a fixed-size patch from

It−1 at location lt as the selected facial part. The patch size

is set as 60× 45 for all face images.

We then enhance each local facial part Î ltt−1 by our lo-

cal enhancement network fe. The resulting enhanced local

patch Î ltt is computed as:

Î ltt = fe(Î
lt
t−1, It−1; θe), (3)

where θe is the local enhancement network parameters. The

output image It at each t-th step is thus obtained by replac-

ing the local patch of the input image It−1 at location lt with

the enhanced patch Î ltt . Our whole sequential Attention-FH

procedure can be written as:











I0 = Ilr

It = f(It−1; θ) 1 ≤ t ≤ T,

Ihr = IT

(4)

where T is the maximal number of local patch mining steps,

θ = [θπ; θe] and f = [fπ; fe]. We set T = 25 empirically

throughout this paper.

3.1. Recurrent Policy Network

The recurrent policy network performs the sequential lo-

cal patch mining, which can be treated as a decision mak-

ing process on discrete time intervals. At each time step, the

agent takes action to determine an optimal image patch to be

enhanced by conditioning on the current state it has reached

so far. Given the selected location, the extracted local patch

is enhanced through the proposed local enhancement net-

work. During each time step, the state is updated by ren-

dering the hallucinated face image with the enhanced facial

part. The policy network recurrently selects and enhances

local patches until the maximum time step is achieved. At

the end of this sequence, a delayed global reward, which is

measured by the mean squared error between the final face

hallucination result and groundtruth high-resolution image,

is employed to guide the policy learning of the agent. The

agent can thus iterate to explore an optimal searching route

for each individual face image in order to maximize the

global holistic reward.

State: The state st at t-th step should be able to provide

enough information for the agent to decide without looking

back more than one step. It is thus composed of two parts:

1) the enhanced hallucinated face image It from previous

steps, which enables the agent to sense rich contextual in-

formation for a new patch to be processed, e.g., the part

which is still blur and requires to be enhanced; 2) the la-

tent variable ht obtained by forwarding the encoded history

action vector ht−1 into the LSTM layer, which is used to

incorporate all previous actions. In this way, the goal of the

agent is to determine the location of the next attended lo-

cal patch by sequentially observing state st = {It, ht} to

generate a high-resolution image Ihr.

Action: Given a face image I with size W×H , the agent

targets on selecting one action from all possible locations
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Figure 2: Network architecture of our recurrent policy network and local enhancement network. At each time step, the

recurrent policy network takes a current hallucination result It−1 and action history vector encoded by LSTM (512 hidden

states) as the input and then outputs the action probabilities for all W ×H locations, where W, H are the height and width of

the input image. The policy network first encodes the It−1 with one fully-connected layer (256 neurons), and then fuse the

encoded image and the action vector with a LSTM layer. Finally a fully-connected linear layer is appended to generate the

W ×H-way probabilities. Given the probability map, we extract the local patch, then pass the patch and It−1 into the local

enhancement network to generate the enhanced patch. The local enhancement network is constructed by two fully-connected

layers (each with 256 neurons) for encoding It−1 and 8 cascaded convolutional layers for image patch enhancement. Thus a

new face hallucination result can be generated by replacing the local patch with an enhanced patch.

lt = (x, y|1 ≤ x ≤ W, 1 ≤ y ≤ H). As shown in Fig. 2,

at each time step t, the policy network fπ first encodes the

current hallucinated face image It−1 with fully-connected

layer. Then the LSTM unit in policy network fuses the

encoded vector with the history action vector ht−1. Ulti-

mately, a final linear layer is appended to produce a W×H-

way vector which indicates the probabilities of all available

actions P (lt = (x, y)|st−1), with each entry (x, y) indicat-

ing the probability of next attached patch located in position

(x, y). The agent will then take action lt by stochastically

drawing an entry following the action probability distribu-

tion. During testing, we select the location lt with the high-

est probability.

Reward: The reward is applied to guide the agent to

learn the sequential policies to obtain the whole action

sequence. Since our model targets on generating a hal-

lucinated face image, we define the reward according to

mean squared error (MSE) after enhancing T attended lo-

cal patches at the selected locations with the local enhance-

ment network. Given the fixed local enhancement network

fe, we first compute the final face hallucination result IT
by sequentially enhancing a list of local patches mined by

l = l1,2,...,T . The MSE loss is thus obtained by computing

Lθπ = Ep(l;π)[‖Ihr − IT ‖2], where p(l;π) is the probabil-

ity distribution produced by the policy network fπ . The

reward r at t-th step can be set as:

rt =

{

0 t < T

−Lθπ t = T.
(5)

By setting the discounted factor as 1, the total discounted

reward will be R = −Lθπ .

3.2. Local Enhancement Network

The local enhancement network fe is used to enhance

the extracted low-resolution patches. Its input contains the

whole face image It−1 that is rendered by all previous en-

hanced results and the selected local patch Î ltt−1 at current

step. As shown in Fig. 2, we pass the input It−1 into two

fully-connected layers to generate a feature map that has

the same size of the extracted patch Î ltt−1 in order to encode

the holistic information of It−1. This feature map is then

concatenated with the extracted patch Î ltt−1 and go through

convolution layers to obtain the enhanced patch Î ltt .

We employ the cascaded convolution network archi-

tecture similar to general image super-resolution meth-

ods [3, 13]. No pooling layers are used between convo-

lution layers, and the sizes of feature maps are kept fixed

throughout all convolution layers. We follow the detailed

setting of the network employed by Tuzel et al.[24]. Two

fully-connected layers contain 256 neurons. The cascaded

convolution network is composed of eight layers. Conv1

and conv7 layers have 16 channels of 3 × 3 kernels; conv2

and conv6 layers have 32 channels of 7× 7 kernels; conv3,

conv4 and conv5 layers have 64 channels of size 7× 7 ker-

nel; conv8 has kernel of size 5×5 and outputs the enhanced

image patch with the same size and channel as the extracted

patch.

In the initialization, we first up-sample the image Ilr to

the same size as high-resolution image Ihr with Bicubic

method. Our network first generates a residual map and then

combines the input low-resolution patch with the residual

map to produce the final high-resolution patch. Learning

from the residual map has been verified to be more effec-

tive than directly learning from the original high-resolution
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images [13] [7].

3.3. Deep Reinforcement Learning

Our Attention-FH framework jointly trains the parame-

ters θπ of the recurrent policy network fπ and parameters

θe of the local enhancement network fe. We introduce a re-

inforcement learning scheme to perform joint optimization.

First, we optimize the recurrent policy network with RE-

INFORCE algorithm [26] guided by the reward given at the

end of sequential enhancement. The local enhancement net-

work is optimized with mean squared error between the en-

hanced patch and the corresponding patch from the ground

truth high-resolution image. This supervised loss is cal-

culated at each time step, and can be minimized based on

back-propagation.

Since we jointly train the recurrent policy network and

local enhancement network, the change of parameters in lo-

cal enhancement network will affect the final face halluci-

nation result, which in turn causes a non-stationary objec-

tive for the recurrent policy network. We further employ

the variance reduction strategy as mentioned in [18] to re-

duce variance due to the moving rewards during the training

procedure.

4. Experiments

4.1. Datasets and implementation details

Extensive experiments are evaluated on BioID [11] and

LFW [9] datasets. The BioID dataset contains 1521 face

images collected under the lab-constrained settings. We use

1028 images for training and 493 images for evaluation.

The LFW dataset contains 5749 identities and 13233 face

images taken in an unconstrained environment, in which

9526 images are used for training and the remaining 3707

images are used for evaluation. This train/test split fol-

lows the split provided by the LFW datasets. In our experi-

ment, we first align the images on BioID dataset with SDM

method [29] and then crop the center image patches with

size of 160 × 120 as the face images to be processed. For

LFW dataset, we use aligned face images provided in LFW

funneled[8] and extract the centric 128×128 image patches

for processing. We evaluate two scaling factors of 4 and 8,

denoted as 4× and 8× in the following figures and tables.

The input low resolution image is generated by resizing the

original image with fixed scaling factors. Thus the input

images in BioID are resized as 40 × 30 and 20 × 15, and

the input images in LFW are resized as 32×32 and 16×16
respectively.

We set the maximum time steps T = 25 in our Attention-

FH model for both datasets. And the face patch size is H ×
W = 60 × 45 for all experiments. The network is updated

using ADAM gradient descent [14]. The learning rate and

the momentum term are set to 0.0002 and 0.5 respectively.

4.2. Evaluation protocols and comparisons

We adopt the widely used Peak Signal-to-Noise Ratio

(PSNR), structural similarity(SSIM) as well as feature sim-

ilarity (FSIM) [33] as our evaluation measurements.

We compare our method with several state-of-the-art

face hallucination and image super-resolution methods. For

face hallucination approaches, we compare with SFH [31],

MZQ [17], BCCNN [36], GLN [24]. We also compare with

two general image super-resolution methods: SRCNN [3]

and VDSR [13]. For the results of VDSR and SRCNN,

we carefully re-implement their models for both scaling

factors 4 and 8. We first pre-train the models proposed

in VDSR and SRCNN using 7,000 images from PASCAL

VOC2012 [4] and then finetune them on the training sets of

LFW and BioID.

4.3. Quantitative and qualitative comparisons

Table 1 shows the performance of our model and com-

parisons with other state-of-the-art methods. Our model

substantially beats all compared methods on LFW and

BioID datasets in terms of PSNR, SSIM and FSIM met-

rics. Specifically, the average gains achieved by our model

in terms of PSNR are 2.59dB, 1.66dB, 2.43dB and 1.8dB

compared with the second best method. The largest im-

provement by our method is 2.59dB over the the second

best method in LFW on scaling factor of 4.

The traditional face hallucination methods, SFH [31] and

MZQ [17], are highly dependent on the performance of fa-

cial landmarks detection. When the scaling factor is set to

8, the landmarks detection results are not reliable given the

very low-resolution input, thus their performances are not

as good as that of our model. As for deep-learning based

methods, our proposed method outperforms the best gen-

eral image super-resolution method VDSR [13] by 3.68dB,

2.05dB, 3.04dB and 2.25dB on different experiments re-

spectively. Furthermore, our model outperforms the second

best face hallucination method GLN [24] by a significant

margin. Noted that GLN [24] shares similar model archi-

tecture with our local enhancement network. Therefore, the

highly improved performance achieved by our model con-

firms the effectiveness of utilizing the attention agent.

The qualitative comparisons of face hallucination results

on LFW dataset and BioID dataset are shown in Fig. 3 and

Fig. 4. As can be observed from these results, our model

produces much clearer images than GLN and VDSR, de-

spite the large variations. For example, in Fig. 3, the eyes

of man on the leftmost column can only be successfully re-

covered by our Attention-FH, which demonstrates the ef-

fectiveness of our recurrent enhanced model.

4.4. Ablation studies

We perform extensive ablation studies and demonstrate

the effects of several important components in our frame-
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Figure 3: Qualitative results on LFW-funneled with scaling factor of 8. Results of SFH and MZQ methods are not displayed

as they depends on facial landmarks which are often failed to detect in such low-resolution images.

(a) Bicubic (b) BCCNN (c) SFH (d) MZQ (e) SRCNN (f) VDSR (g) GLN (h) Our (i) Original

(j) Bicubic (k) BCCNN (l) SFH (m) MZQ (n) SRCNN (o) VDSR (p) GLN (q) Our (r) Original

Figure 4: Qualitative results on LFW-funneled with scaling factor of 4.
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Methods LFW-funneled 4× LFW-funneled 8× BioID 4× BioID 8×

PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

Bicubic 26.79 0.8469 0.8947 21.92 0.6712 0.7824 25.18 0.8170 0.8608 20.68 0.6434 0.7539

SFH [31] 26.59 0.8332 0.8917 22.12 0.6732 0.7832 25.41 0.8034 0.8494 20.31 0.6234 0.7238

BCCNN [36] 26.60 0.8329 0.8982 22.62 0.6801 0.7903 24.77 0.8034 0.8421 21.40 0.6504 0.7621

MZQ [17] 25.93 0.8313 0.8865 22.12 0.6771 0.7802 24.66 0.8003 0.8573 21.11 0.6481 0.7594

SRCNN [3] 28.94 0.8686 0.9069 23.92 0.6927 0.8314 27.02 0.8517 0.8771 22.34 0.6980 0.8274

VDSR [13] 29.25 0.8711 0.9123 24.12 0.7031 0.8391 28.52 0.8627 0.8914 24.31 0.7321 0.8465

GLN [24] 30.34 0.8922 0.9151 24.51 0.7109 0.8405 29.13 0.8794 0.8966 24.76 0.7421 0.8525

Our 32.93 0.9104 0.9427 26.17 0.7604 0.8630 31.56 0.9002 0.9343 26.56 0.7864 0.8748

Table 1: Comparison between our method and others in terms of PSNR, SSIM and FSIM evaluate metrics. We employ the

bold face to label the first place result and underline to label the second in each column.

LFW 4× LFW 8×

T = 5 28.89 23.55

T = 15 31.51 25.25

T = 25 32.93 26.17

T = 35 32.91 26.31

Table 2: Comparison of the variants of our Attention-FH

using different number of steps for sequentially enhancing

facial parts on LFW dataset.

LFW 4× LFW 8×

CNN-16 29.11 24.02

Our w/o attention 32.26 25.71

Random Patch 31.60 25.76

I0 32.10 25.92

Spatial Transform 28.13 25.75

Our 32.93 26.17

Table 3: Comparison of our model with different architec-

ture settings, including the 16-layers convolution network

“CNN-16”, the model “Our w/o attention” that recurrently

enhance the whole image, the model that randomly picks

patches, the model with original low-resolution input im-

age I0 as input for policy network, the end-to-end trainable

spatial transform network, and our Attention-FH.

work:

Effectiveness of increasing recursion depth. Firstly,

we explore the effect of using different recursive steps T
for sequentially enhancing facial parts. We train our model

with four different settings T = 5, 15, 25, 35. Table 2 shows

that the face hallucination performance gradually increases

with more attention steps. The PSNR measurement im-

proves dramatically when the number of recursion steps

is low, since the extracted patches are unable to cover the

whole image. When the number of recursion steps gets

greater than 15, the extracted patches can cover the whole

image, the step-wise performance improvement on PSNR

becomes minor. This phenomenon becomes more obvious

when the number of steps gets close to 25.

Effectiveness of patch-wise enhancement manner. We

SRCNN(3-layers) VDSR(20-layers) OURS(8-layers)

Time 20ms 100ms 81ms

Table 4: Computational cost for testing on 128 × 128 im-

ages.

further evaluate the effectiveness of our patch-wise en-

hancement manner. In table 3, “CNN-16” indicates the re-

sults of a 16-layered fully convolution neural network. By

comparing our model with “CNN-16”, there are 3.82 dB

and 2.14 dB improvements in terms of PSNR on LFW of

factor 4 and factor 8. We also conduct another ablation

study by recurrently enhancing the whole image at each step

without extracting patches, named as “Ours w/o attention”.

This model has the same architecture as our model, and the

number of recurrent steps is set to 5, which nearly covers the

same area of overlapping regions as our full model. From

table 3, we can see that although the recurrent model with-

out attention can achieve promising results, our model with

attention still promotes 0.67 dB and 0.46 dB on LFW 4×
and LFW 8× respectively, which demonstrates the effec-

tiveness of using attention-aware model and reinforcement

learning.

Effectiveness of sequentially attending patches. To

demonstrate the ability of our proposed model to sense

meaningful attention sequence, we conduct two experi-

ments: 1) The patch is randomly picked at each step in-

stead of being chosen by the agent; 2) use original LR im-

age as input for policy network instead of image that has

been locally enhanced at previous steps. As reported in ta-

ble 3, randomly picking patches drops 1.33dB and 0.41dB

on LFW 4× and 8× respectively, indicating the effective-

ness of the agent in our model in locating meaningful atten-

tion sequence, which can further be verified in Fig. 5. The

second experiment shows that the performance will respec-

tively drop 0.83dB and 0.25dB without previous enhanced

information, which confirms that the contextual interdepen-

dency between patches can help to mine the next patches by

our attention agent.

Effectiveness of reinforcement learning. We also
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Figure 5: Example results of enhancement sequences and corresponding patches selected by the agent. The gray in some

patches indicates area outside of original image. Best viewed by zooming in the electronic version.

compare our reinforcement learning with end-to-end back-

propagation method. Spatial transform network proposed

by Jaderberg et al.[10] is capable of computing the sub-

gradients corresponding to the location of the extracted

patch. The comparison results are given in table 3.

Specifically, for “spatial transform” model, we re-

place the softmax output of the policy network with a 2-

dimensional vector, which contains coordinate offsets x and

y of the extracted patch. The transform scale s is fixed so

that the size of extracted patch is also 60 × 45. The spa-

tial transform layer takes {x, y, s} as well as the face im-

age generated at previous step as inputs, and extracts the

patch for enhancement. We expand the enhanced patch with

padding 0s by the spatial transform layer with a transform

vector {−s ∗x,−s ∗ y, 1/s}. Then, the expanded patch can

be added to the low-resolution face image. We calculate the

MSE loss between the groundtruth and the current enhanced

result at each step and train the whole recurrent model in an

end-to-end manner. Except for the spatial transform layer,

all other settings and model architecture remain the same as

our method.

4.5. Visualization of attended regions

We visualize the detailed steps of how the agent works

in our Attention-FH framework. We show the sequences

of intermediate local enhancement results, as well as the at-

tended regions located by the agent. As shown in Fig. 5, our

Attention-FH is able to first locate the corner of the images,

these regions are usually flat background and are easy to

be enhanced without the knowledge of particular face char-

acteristic. Secondly, the model turns to attend the facial

components such as ear, eye, nose and mouth. Finally, the

model refines detailed and high-frequency areas at last few

steps.

4.6. Complexity of recurrent hallucination

We compare the computation cost of our method with

other one-pass full image SR methods. The testing time of

a single 128 × 128 image running on TITANX is reported

in table 4. SRCNN[3] is a 3-layers CNN and it is the fastest

among the compared methods. VDSR[13] use a very deep

CNN with 20-layers, though it achieve state-of-art perfor-

mance, it requires longer processing time. Our local en-

hancement net is an 8 layers CNN. Though it requires mul-

tiple pass, the running time is still comparable. Importantly,

the extra recurrent iteration in our method is performed on

patches, i.e. one forward pass per patch, it performs faster

than other SR models[13].

5. Conclusion

In this paper, we propose a novel Attention-aware Face

Hallucination (Attention-FH) framework and optimize it us-

ing deep reinforcement learning. In contrast to existing face

hallucination methods, we explicitly incorporate the rich

correlation cues among different facial parts by casting the

face hallucination problem as a Markov decision process.

Extensive experiments demonstrate that our model not only

achieves state-of-the-art performance on popular evaluation

datasets, but also demonstrates better visual results. In fu-

ture, we will try to extend our model to a more general form,

which can handle other low-level vision problems.
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