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Abstract

A natural image usually conveys rich semantic content
and can be viewed from different angles. Existing im-
age description methods are largely restricted by small
sets of biased visual paragraph annotations, and fail to
cover rich underlying semantics. In this paper, we inves-
tigate a semi-supervised paragraph generative framework
that is able to synthesize diverse and semantically coher-
ent paragraph descriptions by reasoning over local seman-
tic regions and exploiting linguistic knowledge. The pro-
posed Recurrent Topic-Transition Generative Adversarial
Network (RTT-GAN) builds an adversarial framework be-
tween a structured paragraph generator and multi-level
paragraph discriminators. The paragraph generator gen-
erates sentences recurrently by incorporating region-based
visual and language attention mechanisms at each step.
The quality of generated paragraph sentences is assessed
by multi-level adversarial discriminators from two aspects,
namely, plausibility at sentence level and topic-transition
coherence at paragraph level. The joint adversarial train-
ing of RTT-GAN drives the model to generate realistic para-
graphs with smooth logical transition between sentence top-
ics. Extensive quantitative experiments on image and video
paragraph datasets demonstrate the effectiveness of our
RTT-GAN in both supervised and semi-supervised settings.
Qualitative results on telling diverse stories for an image
also verify the interpretability of RTT-GAN.

1. Introduction
Describing visual content with natural language is an

emerging interdisciplinary problem at the intersection of
computer vision, natural language processing, and artificial
intelligence. Recently, great advances [18, 3, 4, 31, 23, 33]
have been achieved in describing images and videos using
a single high-level sentence, owing to the advent of large

A group of people are sitting around a living 

room together. One of the men is wearing black 

sleeve shirt and blue pants. A man is sitting 

next to the wooden table. A man and woman 

are sitting on a couch. There is a brown 

wooden table in the room.

There is a man sitting on a wooden chair. 

The man with a white remote with white 

buttons is wearing a black and white 

shirt and jean pants. A woman next to 

him has red shirts and red skirts. There 

are a man and woman sitting on the floor 

next to a wooden table. 

A smiling woman is sitting on a couch. 

She has yellow short hair and is wearing a 

short sleeve shirt. She is holding a white 

plate. There is a brown couch in the living 

room. In front of her is a wooden table. 

There are papers and glasses on the table.

a) Generic description:

b) Personalized descriptions:

Figure 1. Our RTT-GAN is able to automatically produce generic
paragraph descriptions shown in (a), and personalized descriptions
by manipulating first sentences (highlighted in red), shown in (b).

datasets [22, 34, 17] pairing images with natural language
descriptions. Despite the encouraging progress in image
captioning [30, 33, 23, 31], most current systems tend to
capture the scene-level gist rather than fine-grained enti-
ties, which largely undermines their applications in real-
world scenarios such as blind navigation, video retrieval,
and automatic video subtitling. One of the recent alterna-
tives to sentence-level captioning is visual paragraph gener-
ation [10, 16, 35, 29], which aims to provide a coherent and
detailed description, like telling stories for images/videos.

Generating a full paragraph description for an im-
age/video is challenging. First, paragraph descriptions tend
to be diverse, just like different individuals can tell stories
from personalized perspectives. As illustrated in Figure 1,
users may describe the image starting from different view-
points and objects. Existing methods [16, 35, 19] determin-
istically optimizing over single annotated paragraph thus
suffer from losing massive information expressed in the im-
age. It is desirable to enable diverse generation through
simple manipulations. Second, annotating images/videos
with long paragraphs is labor-expensive, leading to only
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small scale image-paragraph pairs which limits the model
generalization. Finally, different from single-sentence cap-
tioning, visual paragraphing requires to capture more de-
tailed and richer semantic content. It is necessary to per-
form long-term visual and language reasoning to incorpo-
rate fine-grained cues while ensuring coherent paragraphs.

To overcome the above challenges, we propose a semi-
supervised visual paragraph generative model, Recurrent
Topic-Transition GAN (RTT-GAN), which generates di-
verse and semantically coherent paragraphs by reasoning
over both local semantic regions and global paragraph
context. Inspired by Generative Adversarial Networks
(GANs) [6], we establish an adversarial training mechanism
between a structured paragraph generator and multi-level
paragraph discriminators, where the discriminators learn to
distinguish between real and synthesized paragraphs while
the generator aims to fool the discriminators by generating
diverse and realistic paragraphs.

The paragraph generator is built upon dense semantic re-
gions of the image, and selectively attends over the regional
content details to construct meaningful and coherent para-
graphs. To enable long-term visual and language reason-
ing spanning multiple sentences, the generator recurrently
maintains context states of different granularities, ranging
from paragraph to sentences and words. Conditioned on
current state, a spatial visual attention mechanism selec-
tively incorporates visual cues of local semantic regions to
manifest a topic vector for next sentence, and a language
attention mechanism incorporates linguistic information of
regional phrases to generate precise text descriptions. We
pair the generator with rival discriminators which assess
synthesized paragraphs in terms of plausibility at sentence
level as well as topic-transition coherence at paragraph
level. Our model allows diverse descriptions from a sin-
gle image by manipulating the first sentence which guides
the topic of the whole paragraph. Semi-supervised learn-
ing is enabled in the sense that only single-sentence caption
annotation is required for model training, while the linguis-
tic knowledge for constructing long paragraphs is transfered
from standalone text paragraphs without paired images.

We compare RTT-GAN with state-of-the-art methods on
both image-paragraph and video-paragraph datasets, and
verify the superiority of our method in both supervised and
semi-supervised settings. Using only the single-sentence
COCO captioning dataset, our model generates highly plau-
sible multi-sentence paragraphs. Given these synthesized
paragraphs for COCO image, we can considerably enlarge
the existing small paragraph dataset to further improve the
paragraph generation capability of our RTT-GAN. Qual-
itative results on personalized paragraph generation also
shows the flexibility and applicability of our model.

2. Related Work

Visual Captioning. Image captioning is posed as a
longstanding and holy-grail goal in computer vision, target-
ing at bridging visual and linguistic domain. Early works
that posed this problem as a ranking and template retrieval
tasks [5, 8, 14] performed poorly since it is hard to enu-
merate all possibilities in one collected dataset due to the
compositional nature of language. Therefore, some recent
works [18, 3, 4, 31, 23, 33, 20] focus on directly generat-
ing captions by modeling the semantic mapping from vi-
sual cues to language descriptions. Among all these re-
search lines, advanced methods that train recurrent neu-
ral network language models conditioned on image fea-
tures [3, 4, 31, 33] achieve great success by taking advan-
tages of large-scale image captioning dataset. Similar suc-
cess has been already seen in video captioning fields [4, 32].
Though generating high-level sentences for images is en-
couraging, massive underlying information, such as rela-
tionships between objects, attributes, and entangled geo-
metric structures conveyed in the image, would be missed if
only summarizing them with a coarse sentence. Dense cap-
tioning [12] is recently proposed to describe each region of
interest with a short phrase, considering more details than
standard image captioning. However, local phrases can not
provide a comprehensive and logical description for the en-
tire image.

Visual Paragraph Generation. Paragraph generation
overcomes shortcomings of standard captioning and dense
captioning by producing a coherent and fine-grained nat-
ural language description. To reason about long-term lin-
guistic structures with multiple sentences, hierarchical re-
current network [19, 21, 35, 16] has been widely used to
directly simulate the hierarchy of language. For example,
Yu et al. [35] generate multi-sentence video descriptions for
cooking videos to capture strong temporal dependencies.
Krause et al. [16] combine semantics of all regions of inter-
est to produce a generic paragraph for an image. However,
all these methods suffer from the overfitting problem due
to the lack of sufficient paragraph descriptions. In contrast,
we propose a generative model to automatically synthesize
a large amount of diverse and reasonable paragraph descrip-
tions by learning the implicit linguistic interplay between
sentences. Our RTT-GAN has better interpretability by im-
posing the sentence plausibility and topic-transition coher-
ence on the generator with two adversarial discriminators.
The generator selectively incorporates visual and language
cues of semantic regions to produce each sentence.

3. Recurrent Topic-Transition GAN

The proposed Recurrent Topic-Transition GAN (RTT-
GAN) aims to describe the rich content of a given im-
age/video by generating a natural language paragraph. Fig-
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Figure 2. Our RTT-GAN alternatively optimizes a structured paragraph generator and two discriminators following an adversarial training
scheme. The generator recurrently produces each sentence by reasoning about local semantic regions and preceding paragraph state.
Each synthesized sentence is then fed into a sentence discriminator and a recurrent topic-transition discriminator for assessing sentence
plausibility and topic coherence, respectively. A paragraph description corpus is adopted to provide linguistic knowledge about paragraph
generation, which depicts the true data distribution of the discriminators .

ure 2 provides an overview of the framework. Given an
input image, we first detect a set of semantic regions using
dense captioning method [12]. Each semantic region is rep-
resented with a visual feature vector and a short text phrase
(e.g. person riding a horse). The paragraph generator then
sequentially generates meaningful sentences by incorporat-
ing the fine-grained visual and textual cues in a selective
way. To ensure high-quality individual sentences and coher-
ent whole paragraph, we apply a sentence discriminator and
a topic-transition discriminator on each generated sentence,
respectively, to measure the plausibility and smoothness of
semantic transition with preceding sentences. The genera-
tor and multi-level discriminators are learned jointly within
an adversarial framework. RTT-GAN supports not only su-
pervised setting with annotated image-paragraph pairs, but
also semi-supervised setting where only a single sentence
caption is provided for each image and the knowledge of
long paragraph construction is learned from a standalone
paragraph corpus.

In next sections, we first derive the adversarial frame-
work of our RTT-GAN, then describe detailed model design
of the paragraph generator and the multi-level discrimina-
tors, respectively.

3.1. Adversarial Objective

We construct an adversarial game between the genera-
tor and discriminators to drive the model learning. Specifi-
cally, the sentence and topic-transition discriminators learn
a critic between real and generated samples, while the gen-
erator attempts to confuse the discriminators by generat-
ing realistic paragraphs that satisfy linguistic characteristics
(i.e., sentence plausibility and topic-transition coherence).
The generative neural architecture ensures the paragraph
captures adequate semantic content of the image, which we
describe in detail in the next sections. Formally, let G de-
note the paragraph generator, and let Ds and Dr denote the
sentence and topic-transition discriminators, respectively.

At each time step t, conditioned on preceding sentences
s1:t−1 and local semantic regions V of the image, the gen-
erator G recurrently produces a single sentence st, where
each sentence st = {wt,i} consists of a sequence of Nt

words wt,i (i = 1, . . . ,Nt):

PG(st|s1:t−1,V) =

Nt∏
i=1

PG(wt,i|wt,1:i−1, s1:t−1,V). (1)

The discriminators learn to differentiate real sentences ŝ
within a true paragraph P̂ from the synthesized ones st. The
generator G tries to generate realistic visual paragraph by
minimizing against the discriminators’ chance of correctly
telling apart the sample source. As the original GAN [6]
that optimizes over binary probability distance suffers from
mode collapse and instable convergence, we follow the new
Wasserstein GAN [1] method that theoretically remedies
this by minimizing an approximated Wasserstein distance.
The objective of the adversarial framework is thus written
as:

min
G

max
Ds,Dr

L(G,Ds, Dr) =

Eŝ∼pdata(ŝ)

[
Ds(ŝ)

]
− Es1:t∼pG(s1:t|V)

[
Ds(st)

]
+

EP̂∼pdata(P̂)

[
Dr(P̂)

]
− Es1:t∼pG(s1:t|V)

[
Dr(s1:t)

]
,

(2)

where pdata(ŝ) and pdata(P̂) denote the true data distributions
of sentences and paragraphs, respectively, which are empir-
ically constructed from a paragraph description corpus. The
second line of the equation is the objective of the sentence
discriminator Ds that optimizes a critic between real/fake
sentences, while the third line is the objective of the topic-
transition discriminator Dr. Here pG(s1:t|V) indicates the
distribution of generated sentences by the generator G.

To leverage existing image-paragraph pair dataset in the
supervised setting, or image captioning dataset in the semi-
supervised setting, we also incorporate the traditional word
reconstruction loss for generator optimization, which is de-
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Figure 3. Illustration of our paragraph generator. Given visual features and local phrases of semantic regions, the paragraph generator is
performed for most T steps to sequentially generate each sentence. At t-th step, the paragraph states hP

t is first updated with the embedding
of preceding sentences by paragraph RNN. Then, the visual attention takes features of semantic regions, current paragraph states hP

t and
previous hidden states hS

t−1 as input to manifest a visual context vector fvt . fvt is then fed into sentence RNN to obtain the encoded topic
vector hS

t and determine whether to generate next sentence. The word RNN with language attention then generates each word.

fined as:

Lc(G) = −
T∑

t=1

Nt∑
i=1

logPG(wt,i|wt,1:i−1, s1:t−1,V). (3)

Note that the reconstruction loss is only used for supervised
examples with paragraph annotations, and semi-supervised
examples with single-sentence caption (where we set T =
1). Combining Eqs.(2)-(3), the joint objective for the gen-
erator G is thus:

G∗ = argmin
G

max
Ds,Dr

λL(G,Ds, Dr) + Lc(G), (4)

where λ is the balancing parameter fixed to 0.001 in our
implementation. The optimization of the generator and dis-
criminators (i.e., Eq.(4) and Eq.(2), respectively) is per-
formed in an alternating min-max manner. We describe the
training details in section 3.4.

The discrete nature of text samples hinders gradient
back-propagation from the discriminators to the genera-
tor [9]. We address this issue following SeqGAN [36]. The
state is the current produced words and sentences, and the
action is the next word to select. we apply Monte Carlo
search with a roll-out policy to sample the remaining words
until it sees an END token for each sentence and maximal
number of sentences. The roll-out policy is the same with
the generator, elaborated in Section 3.2. The discriminator
is trained by providing true paragraphs from the text corpus
and synthetic ones from the generator. The generator is up-
dated by employing a policy gradient based on the expected
reward received from the discriminator and the reconstruc-
tion loss for fully-supervised and semi-supervised settings,
defined in Eq. 4. To reduce the variance of the action values,
we run the roll-out policy starting from current state till the

end of the paragraph for five times to get a batch of output
samples. The signals that come from the word prediction
for labeled sentences (defined in Eq. 3)) can be regarded as
the intermediate reward. The gradients are passed back to
the intermediate action value via Monte Carlo search [36].

3.2. Paragraph Generator

Figure 3 shows the architecture of the generator G,
which recurrently retains different levels of context states
with a hierarchy constructed by a paragraph RNN, a sen-
tence RNN, and a word RNN, and two attention modules.
First, the paragraph RNN encodes the current paragraph
state based on all preceding sentences. Second, the spa-
tial visual attention module selectively focuses on semantic
regions with the guidance of current paragraph state to pro-
duce the visual representation of the sentence. The sentence
RNN is thus able to encode a topic vector for the new sen-
tence. Third, the language attention module learns to incor-
porate linguistic knowledge embedded in local phrases of
focused semantic regions to facilitate word generation by
the word RNN.

Region Representation. Given an input image, we
adopt the dense captioning model [12, 16] to detect seman-
tic regions of the image and generate their local phrases.
Each region Rj (j ∈ 1, . . . ,M) has a visual feature vec-
tor vj and a local text phrase (i.e., region captioning) srj =
{wr

j,i} consisting of Nj words. In practice, we use the top
M = 50 regions.

Paragraph RNN. The paragraph RNN keeps track of
the paragraph state by summarizing preceding sentences.
At each t-th step (t = 1, . . . , T ), the paragraph RNN takes
the embedding of generated sentence in previous step as in-
put, and in turn produces the paragraph hidden state hP

t .



The sentence embedding is obtained by simply averaging
over the embedding vectors of the words in the sentence.
This strategy enables our model to support the manipula-
tion of the first sentence to initialize the paragraph RNN
and generate personalized follow-up descriptions.

Sentence RNN with Spatial Visual Attention. The
visual attentive sentence RNN controls the topic of the next
sentence st by selectively focusing on relevant regions of
the image. Specifically, given the paragraph states hP

t from
the paragraph RNN and previous hidden states hS

t−1 of the
sentence RNN, we apply an attention mechanism on the vi-
sual features V = {v1, . . . ,vM} of all semantic regions,
and construct a visual context vector fvt that represents the
next sentence at t-th step:

fvt = attv(V,hP
t ,h

S
t−1)

=

M∑
j=1

α(vj , β(h
P
t ,h

S
t−1))∑M

j′=1 α(vj′ , β(hP
t ,h

S
t−1))

vj

:=

M∑
j=1

ajvj ,

(5)

where β(hP
t ,h

S
t−1) is a linear layer that transforms the con-

catenation of hP
t and hS

t−1 into a compact vector with the
same dimension as vj ; the function α(·) is to compute the
weight of each region and is implemented with a single lin-
ear layer. For notational simplicity, we use aj to denote the
normalized attentive weight of each region Rj .

Given the visual representation fvt , the sentence RNN is
responsible for determining the number of sentences that
should be in the paragraph and producing a topic vector
of each sentence. Specifically, each hidden state hS

t is
first passed into a linear layer to produce a probability over
the two states {CONTINUE=0, STOP=1} which determine
whether t-th sentence is the last sentence. The updated hS

t

is treated as the topic vector of the sentence.
Word RNN with Language Attention. To generate

meaningful paragraphs relevant to the image, the model is
desired to recognize and describe substantial details such
as objects, attributes, and relationships. The text phrases
of semantic regions that express such local semantics are
leveraged by a language attention module to help with the
recurrent word generation. For example, the word RNN
can conveniently copy precise concepts (e.g., baseball, hel-
met) from the local phrases. Following the copy mecha-
nism [7] firstly proposed in natural language processing,
we selectively incorporate the embeddings of local phrases
based on the topic vector hS

t and preceding word state
hw
t,i−1, i ∈ {1, . . . ,Nt} by the word RNN to generate the

next word representation f lt,i. Since each local phrase srj se-
mantically relates to respective visual feature vj , we thus
reuse the visual attentive weights {aj}Mj=1 to enhance the
language attention. Representing each word with an embed-

ding vector wr
i,j , the language representation f lt,i for each

word prediction at i-th step is formulated as

f lt,i = attl(Sr,hS
t ,h

w
t,i−1)

=

M∑
j=1

Nj∑
i′=1

α(wr
i′,j , β(h

S
t ,h

w
t,i−1))∑M

j′=1

∑Nj′
i′′=1 α(w

r
i′′,j′ , β(h

S
t ,h

w
t,i′′−1))

ajw
r
i′,j .

(6)

Given the language representation f lt,i as the input at i-th
step, the word RNN computes a hidden states hw

t,i which is
then used to predict a distribution over the words in the vo-
cabulary. After obtaining all words of each sentence, these
sentences are finally concatenated to form the generated
paragraph.

3.3. Paragraph Discriminators

The paragraph discriminators {Ds, Dr} aim to distin-
guish between real paragraphs and synthesized ones based
on the linguistic characteristics of a natural paragraph de-
scription. In particular, the sentence discriminator Ds eval-
uates the plausibility of individual sentences, while the
topic-transition discriminator Dr evaluates the topic coher-
ence of all sentences generated so far. With such multi-level
assessment, the model is able to generate long yet realistic
descriptions. Specifically, the sentence discriminator Ds is
an LSTM RNN that recurrently takes each word embed-
ding within a sentence as the input, and produces a real-
value plausibility score of the synthesized sentence. The
topic-transition discriminator Dr is another LSTM RNN
which recurrently takes the sentence embeddings of all pre-
ceding sentences as inputs and computes the topic smooth-
ness value of the current constructed paragraph description
at each recurrent step.

3.4. Implementation Details

The discriminators Ds and Dr are both implemented as
a single-layer LSTM with hidden dimension of 512. For the
generator, the paragraph RNN is a single-layer LSTM with
hidden size of 512 and the initial hidden and memory cells
set to zero. Similarly, the sentence RNN and word RNN
are single-layer LSTMs with hidden dimension of 1024 and
512, respectively. Each input word is encoded as a embed-
ding vector of 512 dimension. The visual feature vector vj

of each semantic region has dimension of 4096.
The adversarial framework is trained following the

Wasserstein GAN (WGAN) [1] in which we alternate be-
tween the optimization of {Ds, Dr}with Eq.(2) and the op-
timization of G with Eq.(4). In particular, we perform one
gradient descent step on G every time after 5 gradient steps
on {Ds, Dr}. We use minibatch SGD and apply the RM-
Sprop solver [27] with the initial learning rate set to 0.0001.
For stable training, we apply batch normalization [11] and



set the batch size to 1 (i.e., “instance normalization”). In or-
der to make the parameters of Ds and Dr lie in a compact
space, we clamp the weights to a fixed box [−0.01, 0.01]
after each gradient update. In the semi-supervised setting
where only single-sentence captioning for images and stan-
dalone paragraph corpus are available, we set the maximal
number of sentences in the generated paragraph to 6 for all
images. In the fully-supervised setting, the groundtruth sen-
tence number in each visual paragraph is used to train the
sentence-RNN for learning how many sentences are needed.
We train the models to converge for 40 epochs. The imple-
mentations are based on the public Torch7 platform on a
single NVIDIA GeForce GTX 1080.

4. Experiments

In this section, we perform detailed comparisons with
state-of-the-art methods on the visual paragraph generation
task in both supervised and semi-supervised settings.

4.1. Experimental Settings

To generate a paragraph for an image, we run the para-
graph generator forward until the STOP sentence state is
predicted or after Smax = 6 sentences, whichever comes
first. The word RNN is recurrently forwarded to sam-
ple the most likely word at each time step, and stops af-
ter choosing the STOP token or after Nmax = 30 words.
We use beam search with beam size 2 for generating para-
graph descriptions. Training details are presented in Sec-
tion 3.4, and all models are implemented in Torch plat-
form. In terms of the fully-supervised setting, to make a fair
comparison with the state-of-the-art methods [13, 16], the
experiments are conducted on the public image paragraph
dataset [16], where 14,575 image-paragraph pairs are used
for training, 2,487 for validation and 2,489 for testing. In
terms of semi-supervised setting, our RTT-GAN is trained
with the single sentence annotations provided in MSCOCO
image captioning dataset [2] which contains 123,000 im-
ages. The image-paragraph validation set is used for vali-
dating the semi-supervised paragraph generation. The para-
graph generation performance is also evaluated on 2,489
paragraph testing samples. For both fully-supervised and
semi-supervised settings, we use the word vocabulary of
image-paragraph dataset as [16] does and the 14,575 para-
graph descriptions on public image paragraph dataset [16]
are adopted as the standalone paragraph corpus for train-
ing discriminators. We report six widely used automatic
evaluation metrics, BLEU-1, BLEU-2, BLEU-3, BLEU-4,
METEOR, and CIDEr. The model checkpoint selection is
based on the best combined METEOR and CIDEr score on
the validation set. Table 1 reports the performance of all
baselines and our models.

2) a bicycle parked on the sidewalk

3) man wearing a black shirt

4) a woman wearing a yellow shirt

5) a red and black bike

1) people riding a bike

6) a woman wearing a shirt

Paragraph: A group of people are riding bikes. There are two people
riding bikes parked on the sidewalk. He is wearing a black shirt and
jeans. A woman is wearing a short sleeve yellow shirt and shorts.
There are many other people on the red and black bikes. A woman
wearing a shirt is riding a bicycle.

Figure 4. Visualization of our region-based attention mechanism.
For each sentence generation, RTT-GAN selectively focuses on se-
mantic regions of interest in the spatial visual attention, and atten-
tively leverage the word embeddings of their local phrases to en-
hance the word prediction. In the top row, we illustrate the regions
with highest attention confidences during the spatial visual atten-
tion and its corresponding words (highlighted in red) with highest
attention confidences during the language attention in each step.

4.2. Comparison with the State-of-the-arts

We obtain the results of all four baselines from [16].
Specifically, Sentence-Concat samples and concatenates
five sentence captions from the model trained on MS COCO
captions, in which the first sentence uses beam search and
the rest are samples. Image-Flat [13] directly decodes an
image into a paragraph token by token. Template pre-
dicts the text via a handful of manually specified tem-
plates. And Region-Hierarchical [16] uses a hierarchical
recurrent neural network to decompose the paragraphs into
the corresponding sentences. Same with all baselines, we
adopt VGG-16 net [26] to encode the visual representa-
tion of an image. Note that our RTT-GAN and Region-
Hierarchical [16] use the same dense captioning model [12]
to extract semantic regions. Human shows the results by
collecting an additional paragraph for 500 randomly chosen
images as [16]. As expected, humans produce superior de-
scriptions over any automatic method and the large gaps on
CIDEr and METEOR verify that CIDEr and METEOR met-
rics align better with human judgment than BLEU scores.

Fully-supervised Setting. We can see that our RTT-
GAN (Fully-) model significantly outperforms all base-
lines on all metrics; particularly, 3.35% over Region-
Hierarchical and 5.81% over Image-Flat in terms of CIDEr.
It clearly demonstrates the effectiveness of our region-based
attention mechanism that selectively incorporate visual and
language cues, and the adversarial multi-level discrimina-
tors that provide a better holistic, semantic regularization of
the generated sentences in a paragraph. The inferiority of
Image-Flat compared to the hierarchical networks of RTT-
GAN and Region-Hierarchical demonstrates the advantage
of performing hierarchical sentence predictions for a long
paragraph description.



Table 1. The performance comparisons with four state-of-the-arts and the variants of our RTT-GAN on paragraph generation in terms of
six language metrics. The human performance is included for providing a better understanding of all metrics.

Method METEOR CIDEr BLEU-1 BLEU-2 BLEU-3 BLEU-4
Sentence-Concat 12.05 6.82 31.11 15.10 7.56 3.98

Template 14.31 12.15 37.47 21.02 12.03 7.38
Image-Flat [13] 12.82 11.06 34.04 19.95 12.20 7.71

Regions-Hierarchical [16] 15.95 13.52 41.90 24.11 14.23 8.69
RTT-GAN (Semi- w/o discriminator) 12.35 8.96 33.82 17.40 9.01 5.88
RTT-GAN (Semi- w/o sentence D) 11.22 10.04 35.29 19.13 11.55 6.02

RTT-GAN (Semi- w/o topic-transition D) 12.68 12.77 37.20 20.51 12.08 6.91
RTT-GAN (Semi-) 14.08 13.07 39.22 22.50 13.34 7.75

RTT-GAN (Fully- w/o discriminator) 16.57 15.07 41.86 24.33 14.56 8.99
RTT-GAN (Fully-) 17.12 16.87 41.99 24.86 14.89 9.03

RTT-GAN (Semi + Fully) 18.39 20.36 42.06 25.35 14.92 9.21
Human 19.22 28.55 42.88 25.68 15.55 9.66

This picture is taken for three baseball players

on a field. The man on the left is wearing a

blue baseball cap. The man has a red shirt and

white pants. The man in the middle is in a

wheelchair and holding a baseball bat. Two

men are bending down behind a fence. There

are words band on the fence.

There are several bears standing in the snow.

A little bear is sitting on a large rock. One bear

with its arms straight up is in the middle of the

photo. Two smaller bears are standing on the

side of a wooden fence. A smaller bear is in

the rear view. There is a cage near to one

standing bear.

A tennis player is attempting to hit the tennis

ball with his left foot hand. He is holding a

tennis racket. He is wearing a white shirt and

white shorts. He has his right arm extended

up. There is a crowd of people watching the

game. A man is sitting on the chair.

A man is walking down a street next to a tall

building with several traffic on the side of the

building. He is carrying on a backpack. Some

people are walking past the buildings. The

buildings are made of brick and the windows

are made up of the glasses. There is a person

riding a bicycle in the street. There are cars on

the road.

A couple of zebra are standing next to each

other on dirt ground near rocks. There are trees

behind the zebras. There is a large log on the

ground in front of the zebra. There is a large

rock formation to the left of the zebra. There is a

small hill near a small pond and a wooden log.

There are green leaves on the tree.

The kitchen is very clean for guests to see it

often. There are only the lights. There are

white cabinets on the wall with shelves and

appliances on it. There are three lights hanging

on the wall above the sink. There is two white

microwaves on the wall next to the sink. There

is a couch next to the glass windows.

Figure 5. Example paragraph generation results of our model in the semi-supervised setting (RTT-GAN (Semi-)). For each image, a
paragraph description with all six sentences is generated.

Table 2. Ablation studies on the effectiveness of key components
in the region-based attention mechanism of our RTT-GAN.

Method METEOR CIDEr
RTT-GAN (Fully- w/o phrase att) 16.08 15.13

RTT-GAN (Fully- w/o att) 15.63 14.47
RTT-GAN (Fully- 10 regions) 14.13 13.26
RTT-GAN (Fully- 20 regions) 16.92 16.15

RTT-GAN (Fully-) 17.12 16.87

Semi-supervised Setting. The main advantage of our
RTT-GAN compared to prior works is the capability of gen-
erating realistic paragraph descriptions coordinating with
the natural linguistic properties, given only singe sentence
annotations. It is demonstrated by the effectiveness of

our semi-supervised model RTT-GAN (Semi-) that only
uses the single sentence annotations of MSCOCO captions,
and imposes the linguistic characteristics on the rest sen-
tence predictions using adversarial discriminators that are
trained with the standalone paragraph corpus. Specifi-
cally, RTT-GAN (Semi-) achieves comparable performance
with the fully-supervised Regions-Hierarchical without us-
ing any groundtruth image-paragraph pairs. After aug-
menting the image paragraph dataset with the synthesized
paragraph descriptions by RTT-GAN (Semi-), RTT-GAN
(Semi+Fully) dramatically outperforms RTT-GAN (Fully-
) and other baselines, e.g. 6.84% increase over Regions-
Hierarchical on CIDEr. We also show some qualitative re-
sults of generated paragraphs by our RTT-GAN (Semi-) in



Figure 5. These promising results further verify the ca-
pability of our RTT-GAN on reasoning a long description
that has coherent topics and plausible sentences without the
presence of ground-truth image paragraph pairs.

4.3. The Importance of Adversarial Training

After eliminating the discriminators during the model
optimization in both fully- and semi-supervised settings
(i.e. RTT-GAN (Fully- w/o discriminator) and RTT-GAN
(Semi- w/o discriminator)), we observe consistent perfor-
mance drops on all metrics compared to the full models,
i.e. 1.80% and 4.11% on CIDEr, respectively. RTT-GAN
(Semi- w/o discriminator) can be regarded as a image cap-
tioning model due to the lack of adversarial loss, similar to
Sentence-Concat. It justifies that the sentence plausibility
and topic coherences with preceding sentences are very crit-
ical for generating long, convincing stories. Moreover, the
pure word prediction loss largely hinders the model’s exten-
sion to unsupervised or semi-supervised generative model-
ing. Training adversarial discriminators that explicitly en-
force the linguistic characteristics of a good description can
effectively impose high-level and semantic constraints on
sentence predictions by the generator.

Furthermore, we break down our design of discrimina-
tors in order to compare the effect of the sentence discrimi-
nator and recurrent topic-transition discriminator, as RTT-
GAN (Semi- w/o sentence D) and RTT-GAN (Semi- w/o
topic-transition D), respectively. It can be observed that
although both discriminators help bring the significant im-
provement, the sentence discriminator seems to play a more
critical role by addressing the plausibility of each sentence.

4.4. The Importance of Region-based Attention

We also evaluate the effectiveness of the spatial visual
attention and language attention mechanisms to facilitate
the paragraph prediction, as reported in Table 2. RTT-GAN
(Fully- w/o att) directly pools the visual features of all re-
gions into a compact representation for sequential sentence
prediction, like Region-Hierarchical. RTT-GAN (Fully- w/o
phrase att) represents the variant that removes the lan-
guage attention module. It can be observed that the at-
tention mechanism effectively facilitates the prediction of
RTT-GAN by selectively incorporating appropriate visual
and language cues. Particularly, the advantages of explic-
itly leveraging words from local phrases suggest that trans-
ferring visual-language knowledges from more fundamen-
tal tasks (e.g. detection) is beneficial for generating high-
level and holistic descriptions.

As an exploratory experiment, we investigate generat-
ing paragraphs from a smaller number of regions (10 and
20) than 50 used in previous models, denoted as RTT-GAN
(Fully- 10 regions) and RTT-GAN (Fully- 20 regions). Al-
though these results are worse than our full model, the

Table 3. Human voting results for the plausibility of generated per-
sonalized paragraphs by the variants of our RTT-GAN.

Semi- w/o discriminator Semi- Semi + Fully
12.6% 40.5 % 46.9%

performance of using only top 10 regions is still reason-
ably good. Figure 4 gives some visualization results of our
region-based attention mechanism. For generating the sen-
tence at each step, our model selectively focuses on dis-
tinct regions and their distinct corresponding words in local
phrases to facilitate the sentence prediction.

4.5. Personalized Paragraph Generation

Different from prior works, our model supports the per-
sonalized paragraph generation which produces diverse de-
scriptions by manipulating first sentences. It can be conve-
niently achieved by initializing the paragraph RNN with the
sentence embedding of a predefined first sentence. The gen-
erator can sequentially output diverse and topic-coherent
sentences to form a personalized paragraph for an image.
We present qualitative results of our model in Figure 6.
Some interesting properties of our predictions include its
usage of coreference in the first sentence and its ability to
capture topic relationships with preceding sentences. Given
the first sentences, subsequent sentences give some details
about scene elements mentioned earlier in the description
and also connect to other related content. We also report
the human evaluation results in Table 3 on randomly chosen
100 testing images, where three model variants are com-
pared, i.e. RTT-GAN (Semi- w/o discriminator), RTT-GAN
(Semi-), RTT-GAN (Semi + Fully). For each image, given
two first sentences with distinct topics, each model pro-
duces two personalized paragraphs accordingly. Regarding
to each first sentence of the image, we present three para-
graphs by three models in a random order to judges, and ask
them to select the most convincing ones. The results in Ta-
ble 3 indicate that 87.4% of the judges think the paragraphs
generated by the models (i.e. RTT-GAN (Semi-), RTT-GAN
(Semi + Fully)) that incorporate two adversarial discrimina-
tors, look more convincing than those by RTT-GAN (Semi-
w/o discriminator).

4.6. Extension to Video Domain

As in Table 4, we also extend our RTT-GAN to the task
of video paragraph generation and evaluate it on TACoS-
MultiLevel dataset [24] that contains 185 long videos filmed
in an indoor environment, following [35]. To model spa-
tial appearance, we also extract 50 semantic regions for the
frames in every second. To capture the motion patterns,
we enhance the feature representation with motion features.
Similar to [35], we use the pre-trained C3D [28] model on
the Sport1M dataset [15], which outputs a fixed-length fea-
ture vector every 16 frames. We then perform a mean pool-
ing over all features to generate a compact motion repre-



A man is sitting on a bench outside.

He is wearing a short sleeve shirt and blue jean pants. He

is wearing a white t-shirt and black shoes. There is a

large building in the background with many trees in the

distance. A woman with a jacket is walking to him.

There are three people in the picture.

A man and a woman are sitting in front of a table with food

on. A man is wearing eyeglasses on his face while a

woman with blonde hair is sitting in front of a large plate of

pizza. They are all smiling. The woman on the right is

wearing a blue shirt and a necklace.

A woman is walking on a sidewalk.

She is wearing a gray jacket and blue jeans. She is

staring at the phone in the hand. She is passing a tall

building with some potted plants hanging on. There are

some shadows of trees on the road.

There are four plates on the table.

There are hamburgers in the plates and bear glasses. A

girl with blue sleeve shirt is sitting next to the table. Next

to her is the other man with white shirt with red words on

in the front. An older man with eyeglasses is sitting in

front of table.

Figure 6. Personalized paragraph generations of our model (i.e. RTT-GAN (Semi + Fully)) by manipulating the first sentence. With two
different first sentences for each image, our model can effectively generate two distinct paragraphs with different topics.

Table 4. Results of video paragraph generation on TACoS-
MultiLevel in terms of BLEU-4, METEOR, CIDEr metrics.

Method BLEU-4 METEOR CIDEr
CRF-T [25] 25.3 26.0 124.8
CRF-M [24] 27.3 27.2 134.7
LRCN [4] 29.2 28.2 153.4

h-RNN [35] 30.5 28.7 160.2
RTT-GAN (ours) 33.8 30.9 165.3

sentation, which are used as additional inputs in every vi-
sual attention step. Our model significantly outperforms all
state-of-the-arts, demonstrating its good generalization ca-
pability in video domain.

5. Conclusion and Future Work
In this paper, we propose a Recurrent Topic-Transition

GAN (RTT-GAN) for visual paragraph generation. Thanks
to the adversarial generative modeling, our RTT-GAN is
capable of generating diverse paragraphs when only first
sentence annotations are given for training. The generator
incorporates visual attention and language attention mech-
anisms to recurrently reason about fine-grained semantic
regions. Two discriminators assess the quality of gener-
ated paragraphs from two aspects: sentence plausibility and
topic-transition coherence. Extensive experiments show
the effectiveness of our model in both fully-supervised and
semi-supervised settings. In future, we will extend our gen-
erative model into other vision tasks that require jointly vi-
sual and language modeling.
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