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Abstract—While advances in sensor and signal processing 
techniques have provided effective tools for quantitative 
research on traditional Chinese pulse diagnosis (TCPD), the 
automatic classification of pulse waveforms is remained a 
difficult problem. To address this issue, this paper proposed a 
novel edit distance with real penalty (ERP)-based k-nearest 
neighbors (KNN) classifier by referring to recent progresses in 
time series matching and KNN classifier. Taking advantage of 
the metric property of ERP, we first develop a Gaussian ERP 
kernel, and then embed it into kernel difference-weighted KNN 
classifier. The proposed Gaussian ERP kernel classifier is 
evaluated on a dataset which includes 2470 pulse waveforms. 
Experimental results show that the proposed classifier is much 
more accurate than several other pulse waveform classification 
approaches. 

Keywords-pulse diagnosis; edit distance with real penalty; k-
nearest neighbors; pulse waveform; kernel method; 

I.  INTRODUCTION 
Traditional Chinese pulse diagnosis (TCPD) [1] is a 

convenient, noninvasive, and effective diagnostic method, 
where practitioners feel the fluctuations in radial pulse at the 
styloid processes of wrist classify them into distinct patterns 
which are related to different syndromes and diseases in 
traditional Chinese medicine (TCM). TCPD is a skill which 
requires considerable experience and training, and the 
diagnosis results may vary for different practitioners. Thus, 
techniques developed for measuring and analyzing the 
physiological signals are recently considered in quantitative 
TCPD research [2, 3, 4] as a way to improve the reliability 
and consistency of diagnoses. 

Although much progress has been made in TCPD 
quantification research, the automatic classification of pulse 
waveforms is remained a difficult problem. TCPD 
recognizes more than 20 kinds of pulse patterns, which are 
defined according to the criteria such as shape, position, 
regularity, force, and rhythm [1]. Fig. 1 shows five typical 
pulse waveforms which differ in their shapes. 

 

   
(a)                              (b)                        (c) 

       
(d)                                  (e) 

Figure 1.  Five pulse patterns classified by shape: (a) moderate, (b) smooth, 
(c) taut, (d) hollow, and (e) unsmooth. 

 

 
Figure 2.  Two pulse patterns with similar shapes: (a) A moderate pulse 

with unnoticeable tidal wave is similar to (b) a smooth pulse. 

Pulse waveform classification suffers from the problems 
of complicated intra- and inter-class variations. For example, 
a moderate pulse with unnoticeable tidal wave is similar to a 
smooth pulse (see Fig. 2). For some taut pulses, the tidal 
waves are very high and even merged with percussion wave 
(see Fig. 3). Besides, the time axis distortion and noise also 
have adverse influence on classification accuracy. For 
several classification methods which had been developed for 
pulse waveform classification, e.g., neural networks [5, 7], 
and dynamical time warping (DTW) [6], the reported 
accuracies are mostly below 90%, and usually are tested on 
small datasets. 
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Figure 3.  Intra-class variations of taut pulse waveforms: (a) typical taut 
pulse, (b) taut pulse with high tidal wave, (c) taut pulse with tidal wave 

merged with percussion wave. 

Motivated by progress in elastic metric, this paper 
investigates the approach to utilize time series matching for 
pulse waveforms classification. In time series classification, 
many elastic distance measures, e.g., DTW [8], have been 
proposed to address the time axis distortion problem, but 
only few of them, i.e., edit distance with real penalty (ERP) 
[9], are metrics. Besides, the metric property of distance 
measures has to date been applied mainly to the design of 
fast querying algorithms, and not to classifier design [9, 10]. 
Furthermore, simple KNN classifier usually is adopted in 
time series classification, where recently developed 
advanced KNN classifiers are rarely adopted [11, 12]. By 
incorporating time series matching method with appropriate 
classifier, we expect to develop accurate pulse waveform 
classification methods by simultaneously addressing the 
intra-class variation and the time axis distortion problems. 

In this paper, we first develop a Gaussian ERP (GERP) 
kernel by utilizing the metric property of ERP distance. Then 
we further present a GERP kernel classifier (GEKC) by 
using the KDF-WKNN [11] classification framework. The 
proposed method is evaluated on a dataset which includes 
2470 pulse waveforms of five common pulse patterns. 
Experimental results show that the proposed methods 
achieve an average classification accuracy of 91.74%, which 
is much higher than several other pulse waveform 
classification approaches. 

The remainder of this paper is organized as follows. 
Section II first presents a survey on ERP and KDF-WKNN, 
and then proposes the GEKC method. Section III provides 
the experimental results on pulse waveforms classification. 
Finally, conclusions are drawn in Section IV. 

II. METHOD 
In this section, we first provide a brief introduction to 

ERP and KDF-WKNN. Then by defining a novel elastic 
kernel, GERP kernel, we propose a GERP kernel classifier 
(GEKC) for pulse waveform classification. 

A. Related work 
ERP [9] is a recently-developed elastic distance metric 

which can be regarded as the marriage of lp-norm and edit 
distance. Given two time series A = [a1, a2, …, am] with m 
elements and B = [b1, b2, …, bn] with n elements, the ERP 
distance derp(A,B) of A and B is recursively defined as, 
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where , ,p

i i pA a a⎡ ⎤= ⎣ ⎦… denotes the subsequence of A, | |⋅  
denotes the l1-norm, and g is a constant with the default 
value 0 [9]. 
Theorem 1 [9] Let Q, R, S be three time series of arbitrary 
length. Then it is necessary that ERP satisfies the triangle 
inequality, ( ) ( ) ( ), , ,erp erp erpd Q S d Q R d R S≤ + . 
Corollary 2 [9] The ERP distance satisfies the triangle 
inequality and it is a metric. 

KDF-WKNN is a kernel-based KNN classifier which 
could obtain classification performance comparable to or 
better than several state-of-the-art classification methods 
[11]. In KDF-WKNN, given an unclassified sample x and its 
k-nearest neighbors { }1 2, , ,n n n n

kX x x x= … , the weights of k-
nearest neighbors W = [w1, w2,…, wk]T are defined as a 
vector corresponding to the constrained optimal 
reconstruction of x using nX  in the feature space 

( ): x x→ ΦF  as, 
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The weights W can be obtained by solving the following 
linear equation, 

( )  k ktr k Wη+ =⎡ ⎤⎣ ⎦G G I 1 ,                  (3) 
where η is the regularization parameter, tr(G) is the trace of 
G, Ik is identity matrix, 1k is a k×1 vector with all elements 
equal to 1. The element at the ith row and the jth column of 
G is defined as 

( ) ( ) ( ) ( ), , , ,n n n n
ij i j i jk x x k x x k x x k x x= + − −G ,     (4) 

where ( ),k ⋅ ⋅  denotes the kernel function. 
Finally, the weighted KNN rule is used to assign a class 

label to sample x. For the detailed description of KDF-
WKNN, please refer to [11]. 

B. The GEKC method 
Our motivation for developing the GEKC method is to 

incorporate ERP with Gaussian function to develop a novel 
Gaussian ERP (GERP) kernel function. Because of the 
possible emergence of time axis distortion, classical kernel 
functions [20], such as Gaussian RBF and polynomial, 
generally would not be suitable for time series classification. 
To address the adverse influence of time axis distortion, 
elastic kernels, such as Gaussian DTW kernel, have been 
proposed for kernel-based classifiers [13, 14]. Gaussian 

27292741273727372737

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on January 26,2021 at 05:08:34 UTC from IEEE Xplore.  Restrictions apply. 



DTW kernel is definitely not PDS kernel [15], and it has 
been reported that Gaussian DTW kernel classifiers usually 
cannot guarantee the performance improvement over 
conventional Gaussian RBF kernel classifiers [15, 16]. 
Utilizing the metric property of ERP, we expect that the 
proposed GERP kernel would outperform either Gaussian 
RBF kernel or Gaussian DTW kernel for time series 
classification. Using the GERP and KDF-WKNN, we further 
propose a Gaussian ERP kernel classifier (GEKC) for pulse 
waveform classification. In the following, we will first 
introduce the GERP kernel and then describe the detail of 
GEKC. 

The GERP is developed from a kind of kernel function 
which has the following definition. 
Definition 1 Let the distance function ( ), 'd x x  be 
symmetric, non-negative, and has zero diagonal, i.e. 

( ), ' 0d x x = , then a kind of kernel ( ), 'K x x  can be defined 
as follows, 

( ) ( )( )2, ' exp , ' , 0.K x x d x xγ γ= − ∀ >                (5) 
Previous work has shown that it is possible to construct 

PDS kernel by using elastic distance [17, 18]. However, if 
the elastic distance is non-metric, the kernel function 

( ), 'K x x  defined in (5) is not PDS [19] and is not admissible 
to standard kernel machines, e.g., support vector machines. 
Thus we expect to utilize elastic metric rather than just 
elastic distance to construct kernel function. 
Definition 2 Given two time series x and 'x , the Gaussian 
ERP kernel function ( ), 'erpk x x  is defined as, 

( )( )2 2exp , 'erp erpk d x x σ= − .                      (6) 
where σ is the standard deviation of the Gaussian function. 

Based on the metric property of ERP, GERP kernel may 
be more suitable for kernel classifiers. Actually, we also 
cannot guarantee the PDS property of the GERP kernel. To 
remedy this, we may enforce the PDS property by adding 
sufficiently small values of the variance [20] or forming 
mathematically correct kernels based on global alignments 
[18]. 

For the pulse waveform classification task, we randomly 
choose a set of samples and experimentally analyze the PDS 
property of the GERP kernel. We run the experiment 10 
times and do not observe the violation of the PDS property 
for the GERP kernel. For Gaussian DTW kernel, however, 
we can observe the violation of the PDS property. In [16], 
Gudmundsson et al. claimed that several amendments to 
guarantee the PDS property (e.g., [18]) may make the 
classifier with poor generalization performance. Thus, for 
our pulse waveform classification task, we choose the GERP 
kernel without any amendment in the GEKC classifier. 

We directly add the GERP kernel to KDF-WKNN to 
construct GEKC by defining the Gram matrix GERP, 

ERP kk k k
Τ Τ= + − −G K 1 1 k k1 ,                   (7) 

where K is a k×k matrix with its element at the ith row and 
jth column as 

( )( )2 2exp ,n n
ij erp i jd x x σ= −K ,                   (8) 

and k is a k×1 vector with its element 
( )2 2exp ( , )n

i erp id x x σ= −k .                      (9) 
Once we have the Gram matrix GERP, we can use KDF-

WKNN for pulse waveforms classification by solving the 
linear system of equations defined in (4). As a summary, the 
details of the GEKC algorithm are provided in Fig. 4. 

Input: Unclassified sample x, training sample {x1,…,xn} with the 
corresponding class labels {y1,…,yn}, parameter, η, the 
standard deviation, σ, and the number of nearest neighbors, k. 

Output: Predicted class label 
maxjω of the sample x. 

1.Use ERP metric to obtain the k nearest neighbors { }1 , ,n n
kx x"  of 

sample x, and their corresponding class labels { }1 , ,n n
ky y" . 

2.Calculate the GERP-induced inner product of the nearest neighbors 
of the sample x by (8). 

3.Calculate the GERP-induced inner product of sample x and each 
nearest neighbors by (9). 

4.Calculate Gram matrix GERP using (7). 
5.Obtain W  by solving ( )ERP ERP  G G Ik kk Wtrη⎡ ⎤+ =⎣ ⎦ 1 . 

6.Assign class label 
maxjω to sample x using following rule, 

( )max
arg max n

i j
j

j iy
w

ωω
ω

=
= ∑ . 

Figure 4.  The proposed GEKC algorithm. 

 

III. EXPERIMENTAL RESULTS 
In order to evaluate the performance of GEKC, we 

construct a dataset which includes 2470 pulse waveforms of 
five pulse patterns, moderate (M), smooth (S), taut (T), 
hollow (H), and unsmooth (U) pulse. All of the data are 
collected at Harbin Binghua Hospital from people of 15 to 
75 years old. The pulse waveform datasets used in literature 
[6, 7] only contain less than or about 1000 waveforms, and 
this dataset may be the largest data set yet used in pulse 
waveforms classification. Table I lists the number of pulse 
waveforms for each pulse pattern. We made use of only one 
period from each pulse and normalized them all to the same 
length of 150 points by using bilinear interpolation. 

TABLE I.  THE DATASET USED IN THE EXPERIMENT 

Pulse Patterns M S T U H Total 

Numbers 800 550 800 160 160 2470 

 
We randomly split the dataset into three parts and applied 

10 runs of 3-fold cross-validation to evaluate the 
classification performance of GEKC method. The hyper-
parameters, k, η, and σ of GEKC, are chosen as k = 31, η = 
0.01, σ = 16 using the stepwise selection strategy described 
in [11]. The specificity and the sensitivity obtained using 
GEKC are 78.76% and 91.74%, respectively. 

To provide an objective comparison, we independently 
implemented two pulse waveform classification methods, 
i.e., IDTW [6] and wavelet network [7], and evaluate their 
performance on our dataset. The average classification rates 
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of these two methods are listed in Table II. Besides, we also 
compare the proposed method with several related 
classification methods, i.e., 1NN-Euclidean (1NN-ED), 
1NN-DTW, and 1NN-ERP. These results are also listed in 
Table II. From Table II, one can see that, in term of overall 
average classification accuracy, our method outperforms all 
the other methods. 

TABLE II.  AVERAGE CLASSIFICATION RATES (%) 

Classification 
Methods 

1NN- 
DTW 

1NN- 
ERP 

1NN- 
ED 

WN 
[7] 

IDTW
[6] GEKC 

Moderate 82.44 88.31 86.11 87.23 87.31 91.25
Smooth 81.16 86.31 85.02 85.36 80.38 87.09

Taut 87.95 95.10 95.76 89.63 93.15 96.88
Hollow 82.44 87.56 86.75 85.63 80.44 89.38

Unsmooth 70.81 84.75 84.06 80.63 89.50 86.88
Average 
accuracy 83.19 89.79 87.36 87.08 88.90 91.74 

 

IV. CONCLUSION  
In this paper, we propose a Gaussian ERP kernel and a 

novel kernel classifier, GEKC, for pulse waveform 
classification. To evaluate the classification performance of 
GEKC, we built a dataset of 2470 pulse waveforms. 
Experimental results show that the proposed method 
achieves an average recognition accuracy of 91.74%, which 
is much higher than several other pulse waveforms 
classification methods. 

One potential advantage of the proposed methods is to 
utilize the low bounds and metric property of ERP for fast 
pulse waveform classification and indexing [9]. In our future 
work, we will further investigate accurate and 
computationally efficient ERP-based classifiers for pulse 
waveform classification. 
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