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Discovering Video Shot Categories
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Abstract—Video shots are often treated as the basic elements
for retrieving information from videos. In recent years, video shot
categorization has received increasing attention, but most of the
methods involve a procedure of supervised learning, i.e., training a
multi-class predictor (classifier) on the labeled data. In this paper,
we study a general framework to unsupervisedly discover video
shot categories. The contributions are three-fold in feature, rep-
resentation, and inference: (1) A new feature is proposed to cap-
ture local information in videos, defined with small video patches
(e.g.,11 x 11 x 5 pixels). A dictionary of video words can be thus
clustered off-line, characterizing both appearance and motion dy-
namics. (2) We pose the problem of categorization as an automated
graph partition task, in that each graph vertex represents a video
shot, and a partitioned sub-graph consisting of connected graph
vertices represents a clustered category. The model of each video
shot category can be analytically calculated by a projection pursuit
type of learning process. (3) An MCMC-based cluster sampling
algorithm, namely Swendsen-Wang cuts, is adopted to efficiently
solve the graph partition. Unlike traditional graph partition tech-
niques, this algorithm is able to explore the nearly global optimal
solution and eliminate the need for good initialization. We apply
our method on a wide variety of 1600 video shots collected from In-
ternet as well as a subset of TRECVID 2010 data, and two bench-
mark metrics, i.e., Purity and Conditional Entropy, are adopted
for evaluating performance. The experimental results demonstrate
superior performance of our method over other popular state-of-
the-art methods.

Index Terms—Category discovery, graph partition, unsuper-
vised categorization, video shot.

I. INTRODUCTION

ITH development of multimedia technology, the
W number of videos on the Internet keeps increasing
rapidly. YouTube (http://www.youtube.com/t/press_statistics)
reported that more than 13 million hours of video were up-
loaded during 2010 and 48 hours of video are uploaded every
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minute. The research of managing the large amount of video
data receives increasing attention. In many tasks of multimedia
processing [1]-[3], video shots are often treated as the basic
elements for video analysis. Following the definition in the
cinema world, a video shot includes a sequence of consecu-
tive frames captured from a certain scene, and the camera is
movable in the scene.

In this paper, we study one recently arising problem in video
management—automated discovering categories for a set of un-
labeled video shots. Specifically, with this technology, a batch
of unlabeled video shots can be automatically grouped into dif-
ferent categories according to their contents (i.e., appearances
and motions). We can apply this approach in video database
construction, similar video search, and video content analysis
etc. As illustrated in Figs. 5 and 6, a few video shots sampled
from our testing database exhibit various texture and structure
appearance as well as motion dynamics.

A. Related Work

In the literature of multimedia and image/video processing,
many efforts have been dedicated to automatically discovering
categories from still images or videos.

Previous methods on unsupervised image categorization [4],
[5] compute a number of low-level visual features (such as RGB
color or texture) over the global domain of an image, and pool
them into a feature vector, (i.e., each image is represented by
a feature vector); a clustering algorithm, e.g., k-means or ISO-
Data, is then performed with these feature vectors to categorize
images into K groups. These methods are greatly improved by
using a more effective image representation, e.g., bag-of-words
[6]-10], in which an image is represented by an orderless col-
lection of salient words by using a visual dictionary. Based on
the bag-of-words representation, the probabilistic Latent Se-
mantic Analysis (pLSA) model was adopted to discover cate-
gories from images [11], attempting to explain the distribution
of features in the image as a mixture of a few “semantic topics”.
As an alternative for modeling latent semantic topics, the Latent
Dirichlet Allocation (LDA) model [12], [13] was widely used as
well.

For the task of discovering video shot categories, which is
the focus of this paper, many systems utilize the achievements
in image categorization [1], [3], [14]-[16]. Exploring motion in-
formation is a non-trivial problem for video shot categorization.
Ngo et al. [2] proposed to use statistics of motion vector for clus-
tering and retrieval of video shots. Gupta et al. [17] extracted
the 3D key points over scales to represent videos and performed
categorization similarly with the “bag of words” based methods
for classifying image. Liu ef al. [18] proposed a multi-modality
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video shot clustering method based on the tensor representation
and Affinity Propagation algorithm [19].

By reviewing the previous work, we summarize three key
problems in unsupervised categorization of video shots as fol-
lows.

1) The Effective Video Descriptors Combining Appearance
and Motion Information: The classic image descriptors [9],
[20]-[22], focusing on the textural or structural information
of static image domains, could not be good descriptors for
representing videos. For example, a video shot of one soccer
game, including grass, players and sky, may be not well differ-
entiated with an outdoor landscape shot using the static features
(i.e., some video shots should be distinguished by dynamic
motion information). Recently, video patch based features were
proposed to capture local information in both space and time in
videos [23], [24], and worked well in high-level applications,
e.g., human action analysis and video object retrieval. These
methods inspire us to explore good video descriptors for video
shots.

2) The Adaptive Feature Selection for Different Categories:
There is a clear observation that different categories of video
shots might be better distinguished from each other by using
different combination of features, indicating adaptive feature
selection is a must. In the recent progress of computer vision,
many feature selection algorithms, such as Adaboost [25],
achieve state-of-the-arts performance for a number of super-
vised classification problems. However, most previous works
of unsupervised categorization have not addressed the feature
selection problem very well; instead, for each category, they
use a long feature vector consisting of histograms of gradient
orientations, color, and/or various filters.

3) The Efficient Clustering Algorithm for Automatic Cluster
Number Determination: The inference of clustering is another
key step for discovering categories and each cluster is actually
a category of grouped video shots. In the previous methods, the
cluster number is often prefixed or selected exhaustively in a
small given range [26], [27]. The essence for automatic cluster
number determination lies in whether an algorithm can explore
the solution space efficiently and globally rather than exhaustive
searching. In the literature, the stochastic sampling algorithms
[28]-[31] were proposed to solve the clustering tasks without
prefixed cluster number, such as image segmentation and per-
ceptual grouping, but have not been adopted to discover video
shot categories yet.

B. Overview of Our Method

Addressing the above mentioned problems, we propose a
general method for unsupervised video shot categorization. In
many previous works of classification (e.g., object classifica-
tion [7] and event analysis [8]), graph representations are often
adopted to represent each data entities as a graph vertex and
incorporate mutual interactions among data entities as graph
edges. Then the classification problem is posed as a graph
partition task in general, and each partitioned sub-graph after
optimization indicates a discovered category. Following these
methods, we treat the video shots to be categorized as the
graph vertices and solve the graph partition by a novel cluster
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sampling algorithm. Moreover, we combine the category model
learning with the process of categorization.

We briefly introduce three core components of our method as
follows.

1) Video Representation With Video Words: We propose ef-
fective features (descriptors) to represent videos, which are de-
fined based on small video patches (e.g., 11 x 11 x 5 pixels,
namely “video brick”). In the literature, some efforts of mani-
fold learning for image patches [32]-[34] reveal that (i) a small
image patch is either structural (including simple and regular
image primitives) or textural (including complex and stochastic
patterns); (ii) These image patches can be thus represented by ei-
ther a low dimensional explicit manifold or a high dimensional
implicit manifold, respectively. Accordingly, Zhao et al. [35]
studied the mathematical manifolds of video bricks recently.
By analogy, we define two types of video words: explicit video
words (EVWs) and implicit video words (IVWs). An EVW, a
structural video word, is defined with an explicit function of one
(or few) large base vectors, e.g., to represent a moving struc-
tural primitive. An IVW is described by a histograms for texture
gradients or color respectively. By extracting a large number of
video bricks from natural videos and quantizing them with these
two definitions, we can further build up two word dictionaries
including either EVWs or IVWs. Therefore, a video shot can
be represented by a bag of video words using these two dictio-
naries.

2) Pursuit of Category Models by Information Projection:
For a set of video shots grouped together, we shall adaptively
select appropriate features (video words) for modeling these
video shots, namely, pursuing the category model. To accom-
plish this task, we may use discriminative methods or generative
methods. In some recent work, feature selection is performed to-
ward a discriminative goal by optimizing the classification error
(e.g., Adaboost [25]), given a set of labeled negative and pos-
itive samples. When there are unlabeled data, particularly for
the unsupervised categorization problem, it is desirable to have
a generative learning framework. In this work, we adopt the in-
formation projection strategy for selecting informative and dis-
criminative features during the process of categorization, which
has shown promising results on generative learning under an in-
formation-theoretic framework [32], [33], [36]. As a result, the
generative model for each category can be pursued by maxi-
mizing information gain of selected features. It is worth men-
tioning that the model pursuing is performed simultaneously to-
gether with the clustering procedure.

3) Stochastic Cluster Sampling for Graph Partition: The
computation of clustering is the key component, which is posed
as a graph partition task via the graph representation in which
each vertex specifying a video shot. The graph partition for our
task is challenging due to two characters: the unknown number
of underlying categories and no confident initialization. We for-
mulate the graph partition with a probabilistic form that the pos-
terior probability of graph partition is defined as the accumu-
lation of the generative models of all categories plus the weak
priors. Intuitively, the goodness of partition is determined based
on how well the pursued models explain or represent the parti-
tioned categories. And the number of categories, (i.e., the par-
tition number), can be inferred together with the graph parti-
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Fig. 1. Overview of the proposed method. As the upper panel illustrates, we extract a number of video bricks and construct the dictionaries of video words (i.e.,
explicit video words and implicit video words). In the lower panel, we illustrate the procedure of discovering categories of video shots; it is posed as a unsupervised
graph partition task. Moreover, we simultaneously learn the probability model for each category, as the informative video words are selected.

tion inference. Therefore, solving the optimal graph partition
is equivalent to maximizing the posterior probability under the
Bayesian framework. The optimized partition as well as the
number of category is approximate to the groundtruth. In the
literature, there are many effective algorithms for solving graph
partition. Some deterministic algorithms, such as graph-cuts and
belief propagation [37], are very fast but need a good initial-
ization; some stochastic algorithms, e.g., Gibbs Sampling[29],
can proceed without a good initialization but they are limited
by the low efficiency. In our method, we utilize a recently pro-
posed cluster sampling algorithm, namely Swendsen-Wang cuts
(SWC) [28], and make improvement for its efficiency. The algo-
rithm is able to fast partition the graph into an unknown number
of clusters with a random initialization [28]. In each sampling
step, the algorithm stochastically explores new partition solu-
tions by implementing reversible jumps, (i.e., creating a new
partition or merging two partitions), and the acceptance rate of
the new solution is decided by the Metropolis-Hastings mecha-
nism [31].

The framework of our approach is summarized in Fig. 1,
which includes two stages. In the first stage, as shown in the
upper panel in Fig. 1, two dictionaries of video words (i.e.,
EVWs and IVWs) are constructed. The EVWs are defined with
a bank of spatio-temporal primitives, i.e., moving Gabor ele-
ments in space and time. The IVWs are obtained from a col-
lection of natural videos. A number of small video patches,
namely video bricks, are randomly extracted from videos and
vectorized with the color histogram and the texture gradient his-
togram respectively; we then cluster these feature vectors into
a small number of words, color video words and textural video
words, by the £-means clustering algorithm. In the second stage
of our method, we categorize the video shots by unsupervised
graph partition. Each video shot is represented with the dictio-
naries of EVWs and IVWs. The graph partition is solved by a

Swendsen-Wang cuts sampling algorithm. The partition sam-
pling iterates simultaneously together with the pursuit of cate-
gory models, as illustrated in the down panel in Fig. 1.

The key contributions of this paper are as follows. First, we
propose a general approach for discovering video shot cate-
gories with stochastic cluster sampling via graph representation.
Second, two types of video words are proposed to well capture
local appearance and motion information in video shots. Third,
the generative category models are pursued simultaneously to-
gether with the clustering procedure, using an information gain
criterion. Last, we adopt a cluster sampling algorithm for ef-
ficient inference and the number of categories is automatically
determined. Our method is evaluated on two public datasets and
it outperforms the state-of-the-arts approaches.

The rest of this paper is organized as follows. We first in-
troduce the spatio-temporal video words in Section II. Then
we present problem formulation of discovering video shot cate-
gories under the Bayesian framework in Section III, and follow
with an description of the category model pursuit in Section I'V.
Section V presents the cluster sampling algorithm for infer-
ence. The experimental results and comparisons are exhibited
in Section VI, and the paper is concluded in Section VII.

II. VIDEO WORDS: INTEGRATING APPEARANCE
AND MOTION INFORMATION

In this section, we propose two types of brick-like video
words integrating appearance and motion information, so that
a video shot can be thus represented by a bag-of-words model.

A. Explicit and Implicit Video Words

In recent literature, spatio-temporal video patches have been
proposed in applications of video segmentation [38], object
tracking [39], [40], and action recognition [41], [42]. Inspired
by these works, we define the brick-like video words in space
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Ilustration of explicit video words and implicit video words. An explicit video word (EVW) is defined with moving Gabor elements (denoted as an ellipse),

which can move along with 8 possible directions or keep still, as shown in (a). An implicit video word (IVW) is defined with a statistical histogram. In (b), given
a video brick, we can map it into two feature spaces for calculating the histogram: (i) discretized colors histogram, and (ii) histogram of orientated gradients. See

the text for video word definition in details.

and time. We regard a video shot as a 3D structure consisting
of video patches, as shown in Fig. 2(a). We fix the small size
of a video brick as 11 x 11 pixels in spatial domain, and 5
frames in time, which is less affected by compositionality and
thus remains “pure”. That is, these video bricks of small size
include relative simple content and can be thus described by
one single type of feature. Reversely, video bricks of large
size (e.g., 30 x 30 x 20 pixels) are probably complex due to
comprising objects with various appearances and motions, so
that some hybrid or mixed features are often employed.

To capture and represent the information of such a video
brick (in the size of 11 x 11 x 5 pixels), we consider both ap-
pearance and motion properties. There are two types of video
bricks, which can be characterized in two different ways. The
video shot of a soccer game (Fig. 2(b)) is a good example. One
video brick from the player’s leg can be clearly defined with
a moving Gabor element (denoted by a eclipse). The response
of the Gabor captures the appearance and the motion vector (de-
noted by an arrow) of the Gabor represents the motion dynamic.
Thus, we refer this type of video bricks as “explicit”. By con-
trast, another video brick from the grass has no explicit property
in both appearance and motion, and thus can be only charac-
terized by the implicit statistics, such as color or textural his-
tograms. Since video bricks are fixed in small size, we assume
that each of them can be described by explicitly or implicitly.

With the above observation, we further propose two type of
video words, namely the Explicit Video Words (EVWs) and Im-
plicit Video Words (IVWs), to represent a video shot. In the per-
spective of mathematics, a video word is an ensemble or equiv-
alence class of the video brick instances that share the same def-
inition. We refer a video brick by B, and propose the definitions
as follows.

Definition 1: An explicit video word (EVW) is a cluster
(small set) of bricks spanned by one basis function,

wez{B:B:cGi+E},

where (G; is a primitive function selected from a family of
spatio-temporal basis A, = {G;}Y,, ¢ is the reconstruction
coefficients and ¢ is the residual.

As shown in Fig. 3(a), we define the spatio-temporal basis
A, by moving Gabor wavelets. We use large scale 2D Gabor
wavelets [43] at 36 orientations at size of 11 x 11 pixels; they
move in 8 directions with step of 2 pixels or keep still. So we
can obtain N = 36 X 9 = 324 spatio-temporal primitives, each
of which represents an explicit video word in the dictionary.

Definition 2: An implicit video word (IVW) is a cluster
(small set) of bricks that share a similar statistic,

={B:H®B) = +c},
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where H(B) denotes the texture or color histogram over the
video brick B, I is the mean histogram of the bricks, and ¢ is
the statistical fluctuation, i.e., a very small value.

As shown in Fig. 3(b), to well explore both color and texture
information, we further define two types of implicit video
words: textural video words (TVW) and color video words
(CVW), which have the same form but different types of
histogram.

For defining TVWs, we adopt the orientated gradient his-
togram H(B) = (h1,h2,...,hx), and each bin A, denotes a
quantized value of orientated gradients. We discrete the gradi-
ents into 8 orientations in both spatial and temporal domains,
thus obtaining a histogram of dimension N = 8 x 8 = 64. For
each pixel in a video brick, its gradients in both spatial and tem-
poral domains are calculated and pooled into the histogram. In
constructing TVWs, we first collect many textural video bricks
from our dataset and calculate the histogram for each, and then
group them into a number of clusters using the k-means algo-
rithm. Each cluster represents a TVW and H is calculated by
averaging the histograms in the cluster.

The CVWs are constructed exactly the same as the TVWs
but using the color histogram. In our implementation, we use a
24-dimension histogram in HSV space (18 bins for hue, 3 bins
for saturation, and 3 bins for value).

Given a video word dictionary W = {w;, i =
1,...,M}, where w; is a video word (EVW, TVW or
CVW), any video shot v can be represented as a vector
R = (R1(v), R2(v), ..., Rar(v)), where R;(v) is the response
with the video word w;, and

Ri(v) = h( > 1%(13)),

Bev

)

where 1,,,(B) is the indicator function to indicate whether the
video brick B € v matches with the word w;, i.e., 1,,(B) =
{1]0}. Thus, > "¢, 1., (B) intuitively indicates the number of
the video word w; appearing in the video shot v. h(-) is the
sigmoid transformation which is characterized by a saturation

level ¢ (e.g., & = 6),

2
h(l'):€<1+6—2m/§1)»

which increases from 0 to &.

2

III. PROBLEM FORMULATION

Given a batch of unlabeled video shots [ and a dictionary
of video words W, we discover their categories by partitioning
them into an unknown number of disjoint K groups, as
Il ={Dy,Ds,....,Dg}, Uf_ D, =D, D;AD; =0, Vi # j.

3)

The partition of video shots is defined in an adjacency graph
Gy = (V. Ey), in which V. = D = {v1,vs,...,un} is the
set of graph vertices specifying the video shots to be catego-
rized, and Fj is the set of edges connecting neighboring graph
vertices. We solve the task of graph partition by cutting edges,
i.e., generating disjoint subgraphs. However, Gy is a fully con-
nected graph where the initial edge set Fy could be very large,

leading to intractable inference. We thus need to compute a rel-
atively sparse graph representation Go = (V, E) by pruning
edges, I/ C Fjy at the initialization step, which will be intro-
duced in Section V.

In our method, the graph partition is solved iteratively to-
gether with learning the probability models for each category
Dy, as,

U = { P (W, O), @)
where W, denotes the selected video words for modeling the
category )4, and ©, includes the corresponding model param-
eters, i.e., the coefficients of words.

Thus, we define the solution representation as

§ = (K11, 0), 6)

where K denotes the category number, I and ¥ denote the cat-
egory partitions and category models respectively, and they are
mutually conditional and closely coupled. Given a state of par-
tition, we can learn (or update) the probability models while
the category models can drive the partition to be refined. Com-
pared with the previous unsupervised categorization approaches
[27], we integrate the category number K into the solution .S,
indicating that K should be solved together with category par-
titioning and model learning.

We seek the optimal S* by maximizing a posterior probability
(MAP),

5" = arg max p(S|D), (©6)
where 2 is the solution space for inference. We factorize the
posterior probability under the Bayesian framework,

p(S|D) o p(S)p(D|S), @)
where p(S) and p(D|S) denote the prior model and likelihood
model respectively. Without loss of the generality, we define
the prior model by incorporating an exponential function for £
and an uniform function for II and ¥. The likelihood model
p(D|S) = p(DI|II, W) can be defined as a product of generative
models of all separated categories. Assume each category Dy,
includes n;, video shots (i.e., graph vertices), we have

K

p(DIIL, ¥) = J] Pe(Ws, ©4)
k=1

{ nyg

K
= H HP(?ik,u Wi, O).

k=1i=1

®

Therefore, the posterior probability can be further written as,

K ny
p(SD) o exp{—BK} [] [T P(vr.i» Wi O,

k=1i=1

(€))

where (3 is an empirical parameter constraining the number of
inferred categories. The probability model P, (W}, ©},) for each
category D}, can be learned and updated by a simple yet effec-
tive generative learning algorithm, which will be introduced in
the next section.
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IV. LEARNING GENERATIVE CATEGORY MODEL

Given a graph partition II, we shall learn the probability
model Py (W}, ©) for each category Dy, which is equivalent
to selecting features (i.e., video words) W, C W to describe
Dy..

Since all video shots from D are unlabeled without extra neg-
ative samples, we adopt an efficient generative learning algo-
rithm, namely information projection [32], [33], to select fea-
tures according to the information gain criterion.

Suppose the category Dy, is governed by an underlying target
model F}, the model pursuit can be viewed as finding a se-
quence of informative features from an initial model Py . At
each step 7, the model P, ; is updated to gradually approach I},

(10)

in terms of minimizing the Kullback-Leibler divergence
K(F||P), where we neglect & for simplicity. In the manner of
stepwise pursuing, the new model F; is updated by adding a
new feature based on the current model P;_;.

P()—>P1—>...—>Pt to F,

Pl =argmin K( || P—1), (11)

subject to a new constraint with regard to the new feature w,

(12)

where R, denotes the response of the word w;. Intuitively, we
search the optimal new model P;" closest to current model P; _1,
minimizing X (FP||P;-1), because the previous constraints in
P, _4 should be preserved. Er(R;) represents the expectation
of feature w; over the underlying model, i.e., the marginal dis-
tribution projected into the feature w;, which can be calculated
by averaging feature responses over positive samples. Ep, [R;]
denotes the feature expectation on updated model.

By solving this constrained optimization problem by La-
grange multiplier in (11), we have

Ep,[R:] = Ep[R],

1
Pi(v) = Z—tPt,l(v)e)‘tR‘(“),

(13)

A: is the coefficient weight of the selected feature w; and z;
normalizes the probability to 1. The probability model can be
obtained by 7" rounds of feature selection,

T
1

P(y;©) = Po(v)? exp { ; /\th(w)}. (14)

Z = J]z and ® = (Aq,..., Ar). In our implementation, in

order to make different category model comparable, we use the
same reference model for Py (which could be the uniform dis-
tribution or Gaussian white noise distribution). In the original
version of information projection [36], the probability model
P(v;©) is computational expensive, since in each step ¢, it
needs to draw samples for synthesizing current distribution
from the model P;_; for calculating K(P;||P;—1). Based on
the recently proposed improvement [32], [33], if we enforce
that the selected features have little overlap in both spatial and
frequency domain, we may simply assume that P,_; = Fy
as an approximation, and K(P;||P;—1) = K(P||P) in (11).
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Intuitively, all features are selected independently. Thus, the
feature weight A; can be estimated by MLE over positive
samples (i.e., video shots in category D),

ne

1
L) = ;Rmi), (15)

where 1, is the number of video shots in category Dj,. The nor-
malization term for each round z; can be also solved accord-
ingly, z: = Ep,(exp{A¢R:(v)}). Furthermore, the probability
model can be factorized as

T

P(:0) = () [T | - exwtntn)|.

t

(16)

This model can be learned by selecting the most informative
feature w; having maximum information gain at each round ¢,
denoted by A(wy), to the current model P;_1,

w; = argmax A(wy),

A(Wf) = }C(Ptllptfl) = )\th(’U) — IOth.

(17)
(18)

The feature responses £2;(v;), R, ~ w; € W, v; € D over
all video shots can be calculated off-line, as well as the infor-
mation gain A(w; ), which makes it very fast for the probability
model learning. The efficiency of learning allows us to keep the
category models updating during the process of discovering cat-
egories.

In our method, the inference of discovering categories, in-
cludes a series of steps, which iteratively updates (re-learns)
category models and then re-groups the video shots into cate-
gories guided by the category models. We will discuss it in the
next section.

V. INFERENCE BY STOCHASTIC SAMPLING

Given the posterior probability in (9), we employ a stochastic
cluster sampling algorithm for searching optimized solution S*,
including the graph partitions II and corresponding category
models V.

S ~ p(S|D). (19)

The reasons of using stochastic scheme rather than the deter-
ministic algorithms are as follows. (1) There is not a reliable ini-
tialization for categorization; (2) the posterior probability model
is in a non-convex form so that it is unsuitable for fast gradient
descent optimization; (3) it is difficult to design the heuristic op-
timization rules due to the unpredictable variance and ambiguity
of video shots.

Cluster sampling is a powerful stochastic algorithm, designed
under the Metropolis-Hasting mechanism [31]. It was first pro-
posed by Swendsen and Wang [44] to simulate Ising/Potts
graphical models in physics during the 1980s, and extended for
graph partitioning by Barbu and Zhu [28], who designed the
algorithm called Swendsen-Wang cuts (SWC). It is able to fast
sample the optimal solution S* for the posterior probability
p(S|D) by simulating a Markov chain which visits a sequence
of states in the solution space 2. The algorithm searches the
optimal solution in the Markov chain by realizing a reversible
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jump between any two successive states. We refer to [28] for
the technical background.

Before introducing the inference algorithm, we first discuss
the graph initialization implemented off-line.

A. Graph Initialization

According to the above explanation, the initial adjacency
graph Gy = (V, Ey) is too complex to be inferred with, where
V' is the set of graph vertices specifying the video shots and E
is the set of edges connecting neighboring graph vertices. We
need to firstly obtain a relatively sparse set of connecting edges
E C Ey.

For any edge ¢ € E, we introduce an auxiliary random vari-
able . = {onfoff}, namely connecting variable, which indi-
cates whether the edge is turned on or off, and the edge turn-on
probability ¢. is defined according to the similarity of two con-
nected video shots,

4. = pli. = onlv,,vr), (20)

where v, and v, are two graph vertices connected by the edge
e. In our method, we use the dictionary of video words W to
measure the similarity of two arbitrary video shots. For any ver-
tices v € V, we represent them with the video words, R(v;) =
(R1(v), Ra(v), ..., Ra(v)), where R;(v) is the response with
the video word w;, as in (1). Thus, we can fast compute the
turn-on probability ¢, for two arbitrary video shotsv; € V, v, €
V as

(5,00 =exp { = TE(RIR) + KRR |, @D

4

where we denote R, = R(v;) and Ry = R(wv) for nota-
tion simplicity. K is the Kullback-Leibler divergence for mea-
suring two feature vectors. T is a constant parameter. In prac-
tice, ¢.(s,t) should be close to 0 if v, and v; naturally belong
to different categories, and then the edge e connecting v and v
could be turned off with high probability.

For arbitrary edge e € Ey in the initial adjacency graph, we
first compute the turn-on probability ¢. off line. The edges with
low turn-on probability can be then removed deterministically,

. =0, if g <m, (22)

where 7 is a tuning threshold for controlling the number of edges
in the graph. Therefore, we obtain the more sparse graph G =
(V,E) where E C E,.

B. Cluster Sampling

In the following, we introduce the SWC algorithm for opti-
mized solution inference. In general, this algorithm iterates in
two steps:

Step 1: We generate the connected components (CPs) by
probabilistically turning off connecting edges in the graph.
Graph vertices connected together by “on” edges form a
connected component (denoted by C'P for simplicity). For
arbitrary edge e € FE, we sample the connecting variable p.
following the Bernoulli probability,

(23)

Then we obtain a few C' Ps, each of which is a set of connected
graph vertices.

tte ~ Bernoulli(g.).

Step 2: We probabilistically relabel these C'Ps for exploring
a new partition solution. In the original SWC algorithm [28],
given the generated C'Ps, only one of them shall be selected
for further relabeling. We first introduce the relabeling of the
traditional SWC algorithm, and then discuss our improvement.

Assuming that the current partition solution is S4, we are

exploring a new solution Sg. We can implement two types of
reversible jumps between the two state S 4 and Sp by relabeling
the selected C'P.

» Split: the CP receives a new label that indicates a new
category is created.

* Merge: the C'P receives a label the same with an existing
category, and then the video shots in the C'P are merged
into the category.

We design the relabeling by the Metropolis-Hastings method
[31]. Let Q(S4 — Sp) be the proposal probability for moving
from state .S 4 to state Sg, and conversely, Q(Sg — S.4) is the
proposal probability from Sp to S 4. The acceptance rate of the

move from S4 to Sp is,
P(SB|D)>
: . (4
psap) ) Y

Since given a selected C P we randomly (i.e., uniformly) per-
form the two types of reversible jumps for relabeling, we can
simplify the ratio of the proposal probability as,

Q(Sg — S4)  Tleec, (1 —¢e)

- = 2
Q52 =55 ILeo, (-4 @)

where C' 4 denotes the edge set of edges that are probabilistically
turned off for generating the C'P on state S 4, and similarly Cpg
is the turning-off edge set on Sz. We intuitively call C'4 or Cg
as a “cut”.

In such a Markov chain transition, the computation cost for
each move is relatively low since the computation of the pos-
terior probability ratio p(Sg|D)/p(S4|D) only involves the re-
labeling of video shots in the selected C'P. Intuitively, we only
need to update the models for the categories where we add or
remove video shots.

In our approach, for enhancing the inference efficiency, we
further improve the SWC algorithm by combining the gener-
ated C'Ps into compositional connected components. We thus
call this algorithm compositional SWC. The benefit of this im-
provement is illustrated in the experiment in Section VI.

We demonstrate the key step of the compositional SWC in
Fig. 4, where the different colors indicate different categories.
Given a current solution state S 4 (in Fig. 4(a)), we first generate
a number m of C'Ps by turning off a few edges, as Fig. 4(b) il-
lustrates. Then we build up a higher layer of graph G, as shown
in Fig. 4(c), in which each vertex represents one generated C P
and any two neighboring C' Ps are connected by one edge. Being
similar with the original graph G, the turn-on probability ¢¢*
for each edge in G is calculated according to the consistency of
two connecting C'Ps. More specifically, given the neighboring
CP; and CP;, we define ¢“ by integrating all the turn-on
probabilities of the edges between the two C'Ps,

1 Q(Sp— Sa)
’ Q(Ss — Sg)

a(S4 — Sp) = min (

¢°F x {1—H(1—qe)], e={(s,t),s € CP, t e CF;. (26)
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Fig. 4. Illustration of the compositional Swendsen-Wang cuts algorithm for exploring a new solution state. (a) Current solution sate .S 4 . (b) Sample on/off edge
in each CP. (c) Build a higher layer graph. (d) Sample on/off edge on the higher layer graph, and randomly select a CP for relabeling. (¢) New solution sate Sg.

In the following, we probabilistically turn off the edges in the
higher layer graph G, just like generating C'Ps in the original
graph G, and then obtain a few groups of connected C Ps, i.e.,
the compositional C'Ps in the higher layer. In Fig. 4(d), 4 com-
positional C' Ps are created, and two of them are formed by two
original C'Ps. We can randomly select on compositional C'P
and relabel it with the two abovementioned reversible jumps.
We enforce the compositional C'P being relabeled as a com-
plete unit, i.e., all original C'Ps in the compositional C'P will
receive the same label. As shown in Fig. 4(d), the selected com-
positional C'P is highlighted by the red dashed circle and a new
solution state Sp is achieved as shown in Fig. 4(e).

We can see that the compositional SWC algorithm enlarges
the scope of the sampling algorithm. As Fig. 4 illustrates, go
from S4 to Sp the traditional SWC needs at least three steps,
among which there may be local minimums, whereas for the
compositional SWC there is only one step.

The inference can be stopped according to the current poste-
rior probability p(.S|D) that is kept updating during the sampling
process. In practice, we define the target energy — log p(S|D)
for better manipulation, that is, we stop the algorithm once the
target energy is converged into a very small value. In addition,
we design an experiment to illustrate the convergence of infer-
ence and compare with the original SWC algorithm.

Algorithm 1 summarizes our method of discovering video
shot categories.

Algorithm 1: The Sketch of Discovering Shot Categories by
Unsupervised Graph Partition

1. Input: Video shot dataset D = {vq, ...
words W = {w;, ..., war}

,Un }, and video

2. Output The categorization solution S = (K NI \I!)
3. Initialization;
(1) Represent each video shot v; with the video words,
R(Ui) = {Rl(’l)i)., ey RM'(’UI;)}.
(2) Create the adjacency graph Gy = (V, Eq), and
compute the turn-on probability ¢. according to
(21), Ye € Ejy.
(3) Remove the edges with low turn-on probability
deterministically, as in (22), and obtain the sparse
graph G = (V. E).
4. Loop for cluster sampling
(1) At the current solution S 4, generate the CPs by
probabilistically turning off connecting edges in
the graph G.
(2) Randomly select a number m of C'Ps for
constructing a high layer of graph G.
(3) Generate the compositional C'Ps by
probabilistically turning off edges in G.
(4) Randomly select one compositional C'P and relabel
it to achieve one new solution Sg.
(5) Accept the new solution according to the
acceptance rate defined in (24).
(6) Continue the loop until the target energy
—log p(S|D) converge into a small value.
5. Output the final solution S* = arg max p(S|D).

VI. EXPERIMENTS

In this section, we evaluate the proposed method to discover
categories from a number of unlabeled video shots, and com-
pare with other state-of-the-arts approaches. The experiments
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Fig. 5. Representative video shot samples from the SYSU_VIDEO_SHOTS dataset.

are carried out on two public datasets of video shots: one col-
lected from Internet called SYSU VIDEO SHOTS! and the
other selected from the TRECVID database [45]. In general,
each video shot in these two datasets spans 3 ~ 60 scconds
with frame rate 25 fps.

A. Datasets and Benchmark

The SYSU VIDEO SHOTS dataset include 1600 video
shots in total, and were classified manually into 16 categories
according to their meaningful semantics. The detailed statistics
of video shots are summarized in Table I, and some represen-
tative samples are shown in Fig. 5. Compared with the current
public databases of video shots, the SYSU VIDEO SHOTS
dataset has the following characters. First, the data is very
compact since all video shots are carefully reviewed and some
redundant entities have been removed. Second, the video shots
exhibit large appearance variance as well as motion dynamics
so that the dataset can be suitable for evaluating the adaptability
of categorization methods (as Fig. 8 illustrates). For example,
some video shots include structural moving or static objects,
such as cars, faces, and airplane; some include objects of rich
textural appearance and/or motion dynamics, such as cityscape
and crowd. Third, the semantic topics of this dataset cover a
wide range of daily videos, and some special and interesting
categories are prepared, such as cloud and waterfall.

The dataset from TRECVID 2010 includes more than
8000 video shots of 40 semantic categories. Although

IThis dataset is available  on-line:

data_videoshots.html

now http://gitl.sysu.edu.cn/

TABLE 1
SYSU_VIDEO_SHOTS DATASETS FOR PERFORMANCE
TESTING (#: NUMBER OF SHOTS)

Category # Category #
Basketball 106 Airplane 93
Car 104 City 92
Crowd 108 Cloud 99
Waterfall 104 Face 102
Ice 99 Soccer 104
Mountain 94 Jungle 92
Snooker 102 Ping-Pong 108
Waterscape 93 Sunrise 100

the complete TRECVID 2010 database includes 130 se-
mantic concepts in total, 50 of them have been annotated
for evaluating classification. And 10 categories out of the
50 annotated categories include only a very small number
of video shots, e.g., less than 20. Thus, we test our ap-
proach with the rest 40 annotated categories. The 40 cate-
gories are Adult, Airplane Flying, Animal, Asian_People,
Boat Ship, Building, Bus, Cityscape, Computer Or Televi-
sion_Screens, Computers, Dancing, Dark-skinned People,
Demonstration_Or_Protest, Doorway, Explosion Fire, Fe-
male Person,  Female Human Face Closeup,  Flowers,
Ground_Vehicles, Hand, Indoor, Indoor Sports Venue, In-
fants, Instrumental Musician, Landscape, Male Person,
Mountain, News_Studio, Nighttime, Old_People, Plant, Road,
Running, Scene_Text, Singing, Telephones, Vehicle, Walking,
Walking Running, Waterscape Waterfront, respectively. Some
representative samples are illustrated in Fig. 6.

The TRECVID database was originally proposed for evalu-
ating semantic indexing and supervised categorization, and the
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Fig. 6. Representative video shot samples for the dataset selected from TRECVID 2010.

evaluation metrics it compromised are not for unsupervised cat-
egory discovering. More specifically, the metrics in TRECVID
such as Retrieval Rate, Recall and Precision are defined for
evaluating the performance of ranking with matching (detec-
tion) score that can be output by a retrieval or detection system,;
in addition, the number of categories is assumed to be fixed.

Therefore, we adopt the Purity and the Conditional Entropy
as the benchmark metrics for quantitative evaluation, following
the empirical survey of unsupervised discovery [27]. We briefly
introduce these two metrics as follows.

For the input set D, including a number of N shot

instances, suppose the underlying category number is
L and the corresponding groundtruth category labels
are denoted by X = {x; € [1.I], ¢« = 1,....N}L

A system partitions the video shots into K categories,
{Di, & = 1,...,K}, together with the inferred category
labels Y = {y; € [1,K], i = 1,...,N}. Note that there is
a possibility of K # L due to the automatic cluster number
determination. Then the metric Purity and Conditional Entropy
are, respectively, defined as,

Purity(X|Y) =Y p(y) max p(zy), 27)
yey
1
.H X Y = I 7 ol 1 QN 28
( | ) y;/[)(y)mezxp(dy) 0g p(J,|g) (28)

where p(y) = |D,|/N and p(z|y) can be simply estimated from
the observed frequencies in categorized data, resulting in an em-
pirical estimation. | D,;| represents the number of video shots in
one category. Intuitively, the larger value of Purity implies the
better performance in categorization and the Conditional En-
tropy is the other way round.

B. Parameters Setting and Results

We carry out the experiments on a PC with Core Duo 3.0 GHZ
CPU and 16 GB memory. In the experiments, we first randomly
select 1000 video shots for video brick extraction and word dic-
tionary construction. We set the parameter /3 in the probabilistic
formulation (9) # = 600, and the temperature parameter 7 in
the probabilistic edge definition (21) 7 = 0.25.

Since we adopt the stochastic sampling algorithm for clus-
tering inference, we carry out our method 10 times and use the

TABLE 11
THE INFERRED CLUSTER NUMBER IN EACH TIME OF EXPERIMENT

# 1 2 3 4 5 6 7 8 9 10
1 18 19 18 18 19 16 17 17 18 16
II 39 41 38 38 41 41 41 38 37 40
#: No. of experiments;

I: Experiments on SYSU_VIDEO_SHOTS dataset;
II: Experiments on TRECVID dataset.

average performance for comparison. The cluster numbers in-
ferred by our method may not be identical each time. The in-
ferred numbers of clusters each time are reported in Table II. For
SYSU VIDEO SHOTS dataset, the expected cluster number
based on the average of 10 times is 17.6; for TRECVID data,
the expected cluster number is 39.5.

For comparison, we implement four typical methods of
unsupervised clustering, including k-means clustering, the
pLSA [11], [46], Affinity Propagation (AP) [19] and LDA [13].
These methods use exactly the same setting as in our approach
for fairly evaluating, and the categorization number for them
is manually fixed, i.e., 16 for SYSU VIDEO_SHOTS dataset
and 40 for the TRECVID dataset, respectively. Moreover,
to illustrate the benefit of the proposed video brick features
(i.e., EVWs and IVWs), we also compare with the HoG [21]
descriptors, the state-of-the-arts appearance features for 2D
image patches. In this comparison, we first extract 2D image
patches from videos with a regular size, say 15 x 15 pixels, and
then construct the word dictionary with the HoG descriptor.
For all the five methods, we perform the experiments with
both the video brick features and image patch features. The
performance comparisons are exhibited in Fig. 7 based on
the two benchmark metrics, Purity and Conditional Entropy.
Overall, our method achieves the average categorization purity
of 0.5647 and 0.2650 on the two datasets respectively, and
outperforms the other unsupervised categorization approaches;
the advantages of video brick features are clearly illustrated as
well.

In our method, the clustering inference is performed simul-
taneously with the feature selection for category modeling. In
Fig. 8, we show the selected video words of different types, i.e.,
structural, color, and textural words, for different categories, and
the weights of top 40 informative words are plotted as well. The
results are quite reasonable because the selected words indeed
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Fig. 7. Experiment results with the two benchmark metrics, Purity and Conditional Entropy. We compare our method with other popular unsupervised catego-
rization algorithms as well as the recently proposed image features. In each figure, the vertical and horizontal axes, respectively, represent the benchmark metrics
and the different clustering algorithms. The red pillars denote using the proposed video brick features and blue ones using the image patch features. (a) Purity
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Fig. 8. The selected video words for 8 categories. For each category, we exhibit the top 40 informative videos words according to their information gain (the

vertical axe). The different colors represent different types of video words.

match the appearance and motion dynamics of the video shots.
For example, the structural video words mainly affect the video
shots such as airplane and car; the textual video words play im-
portant roles in video shots of cloud, waterfall and the crowd;
the color video words are effective to model the sunset shots.

In order to demonstrate the benefit of the compositional SWC
algorithm for cluster sampling, we compare the convergence
efficiency with the original 2-way SWC algorithm. Fig. 9 shows
the convergence curves of the target energy, — log P(S|D), in
the inference with the increasing iteration steps. We test on both
the two datasets. The dashed (blue) curves and the solid (red)
curves are generated from the original SWC algorithm and the
compositional SWC algorithm, respectively.

C. Complexity Analysis

In the following, we present an elementary analysis about
the complexity of our approach, along with the increase of data
scale. Complexity is one of the key concerns for many multi-
media processing systems and it is associated with both space
and time.

In this work, the space complexity is co-related with the
numbers of video words (i.e., EVWs, TVWs and CVWs),
which are all fixed as constants. The EVWs are defined with a
set of moving Gabor wavelets, and thus the number of EVWs
is fixed as 324. For constructing the implicit video words,
we randomly collect more than 40000 video bricks from the
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Fig. 10. Time complexity analysis with the increasing of data scale. This analysis is performed on the TRECVID dataset. In each figure, the vertical axis represents
the speed (iteration number) of convergence; the horizontal axis in (a) represents the number of video shots with the fixed 40 underlying categories, in (b) the
number of categories with the fixed amount of video shots, and in (c) the number video shots with various underlying categories.

databases and generate 1400 TVWs and 600 CVWs, as in-
troduced in Section II-A. Therefore, there are totally 2324 of
video words in the dictionary. This dictionary of video words
is kept for carrying out all experiments. In practice, we may
re-generate the video words once the data advances by an order
of magnitude, i.e., hundreds of underlying categories.

We consider the time complexity as the iteration steps in
the stochastic graph partition. For the experiments on the
SYSU VIDEO_SHOTS dataset, it costs average 0.09 s per
iteration step, and for the TRECVID data, it costs average 0.22
s per step. In the experiments, two factors basically affect the
time complexity: the total number of video shots to be catego-
rized and the underlying category number. For quantitatively
analysis, we visualize the numbers of iteration steps on various
data scales, as Fig. 10 shows. We can observe that the time
complexity increases in the nonexponential order, making the
system is potential to be applied to larger scale data.

VII. CONCLUSION

This paper studies a general framework to discover video shot
categories automatically via unsupervised graph partition. Com-
pared with the previous methods, the advantages of the proposed
method are identified on two public datasets and summarized as
follows. First, the proposed video words are powerful to capture
local appearance information and motion dynamics in the video
shots. Second, the feature selection is performed simultaneously
with the clustering procedure, guided by a generative model for

each category. Third, we adopt a cluster sampling algorithm for
efficient inference, in which the clustering number is automati-
cally determined with the global optimization.

In the future, we plan to improve the method in two aspects.
(1) More effective models, e.g., pyramid model or hierarchical
model, can be utilized to represent video shots, instead of the
“bag of words” model. (2) The incremental learning strategy
can be integrated into pursuing category models, particularly
for large-scale data.
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